Article Data

  • Views 782
  • Dowloads 162

Original Research

Open Access

The Effect of Pulpotomy Base Material on Bacterial Penetration and Proliferation for Pulpotomized Primary Molar Teeth: A Confocal Laser Scanning Microscopy Study

  • Shlomo Elbahary1
  • Rolanda Bercovich2
  • Nardeen Abboud Azzam3
  • Sohad Haj-yahya1
  • Hagay Shemesh4,5
  • Igor Tsesis1
  • Eyal Rosen1,*,

1Department of Endodontology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel

2Dental health services, Clalit smile, Tel Aviv, Israel

3Department of Pediatric dentistry, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel

4Department of Endodontology, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam, Netherlands

5 VU University, Amsterdam, The Netherlands

DOI: 10.17796/1053-4625-44.2.3 Vol.44,Issue 2,March 2020 pp.84-89

Published: 01 March 2020

*Corresponding Author(s): Eyal Rosen E-mail: eyalrosen@gmail.com

Abstract

Introduction: the study aimed to evaluate Enterococcus Faecalis colonization in the pulp chamber in pulpotomized extracted human teeth filled by different pulpotomy base materials (PBMs), using confocal laser scanning microscopy (CLSM). Study design: Cavity preparations were made in 70 extracted primary molars. The pulp chambers were filled using either Intermediate restorative material (IRM), Mineral Trioxide Aggregate (MTA) or Glass ionomer (GI). Twenty-five teeth served controls. The specimens were sterilized, and coronally filled with bacterial suspension for 21 days. The specimens were cut through the furcation area, stained using LIVE/DEAD BacLight Bacterial Viability Kit and evaluated using CLSM. Results: The extent of fluorescent staining was larger in the GI group, compared to the IRM and MTA groups, and larger in the IRM group compared to the MTA group (P<0.05). The minimal and maximal bacterial penetration depths into the dentinal tubules were 55 and 695&mu;m, respectively (mean 310&mu;m), without differences between the materials (GI, IRM, MTA, p>0.05). The ratio of live bacteria to dead bacteria within the evaluated areas was higher in the GI group compared to the IRM and the MTA groups, and higher in the IRM group compared to the MTA group (P<0.05). There were no differences between the mesial, distal and apical parts in any of the evaluations (p>0.05). Conclusions: bacteria colonize the interface between the PBM and dentin and penetrate deeply into the dentinal tubules. The extent and the vitality of the colonized bacteria may be affected by the type of PBM.

Keywords

Pulpotomy; Base materials; Bacterial colonization; Enterococcus faecalis; Confocal laser scanning microscopy


Cite and Share

Shlomo Elbahary,Rolanda Bercovich,Nardeen Abboud Azzam,Sohad Haj-yahya,Hagay Shemesh,Igor Tsesis,Eyal Rosen. The Effect of Pulpotomy Base Material on Bacterial Penetration and Proliferation for Pulpotomized Primary Molar Teeth: A Confocal Laser Scanning Microscopy Study. Journal of Clinical Pediatric Dentistry. 2020. 44(2);84-89.

References

1 Rodd, H. D., Waterhouse, P. J., Fuks A. B., et al. Pulp therapy for primary molars. Int J Paediatr Dent 16 Suppl 1, 15-23, doi:10.1111/j.1365- 263X.2006.00774.x (2006).

2 Ng, F. K. & Messer, L. B. Mineral trioxide aggregate as a pulpotomy medicament: an evidence-based assessment. Eur Arch Paediatr Dent; 9, 58-73. 2008.

3 Torabinejad, M., Ford, T. R., Abedi. et al. Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. J Endod; 24, 468-471. 1998.

4 Torabinejad, M., Hong, C. U., Pitt Ford, T. R. et al. Antibacterial effects of some root end filling materials; J Endod 21, 403-406. 1995.

5 Chohan, H., Dewan, H., Annapoorna, B. M. et al. Comparative evaluation of sealing ability of glass ionomer-resin continuum as root-end filling materials: An in vitro study. J Int Soc Prev Community Dent 5, 488-493, doi:10.4103/2231-0762.168644 (2015).

6 Rolling, I. & Thylstrup, A. A 3-year clinical follow-up study of pulpotomized primary molars treated with the formocresol technique. Scand J Dent Res; 83, 47-53 (1975).

7 Holan, G., Fuks, A. B. & Ketlz, N. Success rate of formocresol pulpotomy in primary molars restored with stainless steel crown vs amalga. Pediatr Dent 24, 212-216. 2002.

8 Guelmann, M., Bookmyer, K. L., Villalta, P. et al. Microleakage of restorative techniques for pulpotomized primary molars. J Dent Child (Chic); 71,209-211. 2004.

9 Tsesis, I., Elbahary, S., Venezia, N. B. et al. Bacterial colonization in the apical part of extracted human teeth following root-end resection and filling: a confocal laser scanning microscopy study. Clin Oral Investig 22, 267-274, doi:10.1007/s00784-017-2107-1 (2018).

10 Brosco, V. H., Bernardineli N., Aparecido S., et al. Bacterial leakage in obturated root canals-part 2: a comparative histologic and microbiologic analyses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109, 788-794, doi:S1079-2104(09)00967-6 [pii]10.1016/j.tripleo.2009.11.036 (2010).

11 Aziz, A., Parmar, D., McNaughton, et al.. Bacterial viability determination in a dentinal tubule infection model by confocal laser scanning microscopy. Methods Mol Biol 666, 141-150, doi:10.1007/978-1-60761-820-1_10(2010).

12 Zapata, R. O., Bramante C. M., Moraes I. G. M et al. Confocal laser scanning microscopy is appropriate to detect viability of Enterococcus faecalis in infected dentin. J Endod 34, 1198-1201, doi:S0099-2399(08)00609-2 [pii] 10.1016/j.joen.2008.07.001 (2008).

13 Ray, H. A. & Trope, M. Periapical status of endodontically treated teeth in relation to the technical quality of the root filling and the coronal restoration. Int Endod J; 28, 12-18 .1995.

14 Barthel, C. R., Strobach, A., Briedigkeit, H., et al. Leakage in roots coronally sealed with different temporary fillings. J Endod 25, 731-734, doi:10.1016/S0099-2399(99)80119-8.1999.

15 Yamasaki, M. et al. Endotoxin and gram-negative bacteria in the rat periapical lesions. J Endod 18, 501-504, doi:10.1016/S0099-2399(06)81351-8 (1992).

16 Chivatxaranukul, P., Dashper, S. G. & Messer, H. H. Dentinal tubule invasion and adherence by Enterococcus faecalis. Int Endod J 41, 873-882, doi:10.1111/j.1365-2591.2008.01445.x (2008).

17 Du, T., Shi Q., Cao Y., et al. Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro. J Endod 39, 1438-1443, doi:S0099-2399(13)00590-6 [pii]10.1016/j.joen.2013.06.027 (2013).

18 Meire, M. A., Coenye, T., Nelis, H. J. et al. Evaluation of Nd:YAG and Er:YAG irradiation, antibacterial photodynamic therapy and sodium hypochlorite treatment on Enterococcus faecalis biofilms. Int Endod J 45, 482-491, doi:10.1111/j.1365-2591.2011.02000.x (2012).

19 Rosen, E., Kolodkin-Gal , I. & Tsesis, I. Challenges in the Eradication of Enterococcus faecalis and its Implications on Health. Current Oral Health Reports, doi:https://doi.org/10.1007/s40496-018-0172-4 (2018).

20 Roth, K. A., Friedman, S., Levesque, C. M. et al. Microbial biofilm proliferation within sealer-root dentin interfaces is affected by sealer type and aging period. J Endod 38, 1253-1256, doi:10.1016/j.joen.2012.05.014 (2012).

21 Tulunoglu, O., Bodur, H., Uctasli, M. et al. The effect of bonding agents on the microleakage and bond strength of sealant in primary teeth. J Oral Rehabil 26, 436-441 (1999).

22 Barrieshi-Nusair, K. M. & Hammad, H. M. Intracoronal sealing comparison of mineral trioxide aggregate and glass ionomer. Quintessence Int 36, 539-545 (2005).

23 Yavari, H., Samiei, M., Eskandarinezhad, M. et al. An in vitro comparison of coronal microleakage of three orifice barriers filling materials. Iran Endod J 7, 156-160 (2012).

24 John, A. D., Webb, T. D., Imamura, G. et al. Fluid flow evaluation of Fuji Triage and gray and white ProRoot mineral trioxide aggregate intraorifice barriers. J Endod 34, 830-832, doi:10.1016/j.joen.2008.03.014 (2008).

25 Asgary, S. & Ehsani, S. Permanent molar pulpotomy with a new endodontic cement: A case series. J Conserv Dent 12, 31-36, doi:10.4103/0972- 0707.53340 (2009).

26 Maroto, M., Barberia, E., Vera, V., et al. Dentin bridge formation after white mineral trioxide aggregate (white MTA) pulpotomies in primary molars. Am J Dent 19, 75-79 (2006).

27 Torabinejad, M., Rastegar, A. F., Kettering, J. D., et al. Bacterial leakage of mineral trioxide aggregate as a root-end filling material; J Endod; 21, 109-112. 1995.

28 Torabinejad, M. & Chivian, N. Clinical applications of mineral trioxide aggregate. J Endod 25, 197-205, doi:10.1016/S0099-2399(99)80142-3 (1999).

29 Zhang, H., Pappen, F. G. & Haapasalo, M. Dentin enhances the antibacterial effect of mineral trioxide aggregate and bioaggregate. J Endod 35, 221-224, doi:10.1016/j.joen.2008.11.001 (2009).

30 Tanomaru-Filho, M., Tanomaru, J. M., Barros, D. B., et al. In vitro antimicrobial activity of endodontic sealers, MTA-based cements and Portland cement. J Oral Sci 49, 41-45 (2007).

31 Al-Hezaimi, K., Al-Shalan, T. A., Naghshbandi, J., et al. MTA preparations from different origins may vary in their antimicrobial activity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107, e85-88, doi:10.1016/j. tripleo.2009.01.045 (2009).

32 Estrela, C., Bammann, L. L., Estrela, C. R., et al. Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz Dent; J 11, 3-9. 2000.

33 Parirokh, M., Asgary, S., Eghbal, M. J., et al. A comparative study of using a combination of calcium chloride and mineral trioxide aggregate as the pulp-capping agent on dogs’ teeth. J Endod 37, 786-788, doi:10.1016/j. joen.2011.03.010 (2011).

34 Slutzky, H., Slutzky-Goldberg, I., Weiss, E. I., et al. Antibacterial properties of temporary filling materials. J Endod 32, 214-217, doi:S0099- 2399(05)00075-0 [pii] 10.1016/j.joen.2005.10.034 (2006).

35 Davidovich, E., Weiss, E., Fuks, A. B., et al. Surface antibacterial properties of glass ionomer cements used in atraumatic restorative treatment. JAm Dent Assoc; 138, 1347-1352 .2007.

36 Peters, L. B., Wesselink, P. R., Buijs, J. F., et al. Viable bacteria in root dentinal tubules of teeth with apical periodontitis. J Endod 27, 76-81, doi:10.1097/00004770-200102000-00002 (2001).

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Scopus: CiteScore 2.0 (2022) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.

Submission Turnaround Time

Conferences

Top