Article Data

  • Views 1142
  • Dowloads 216

Original Research

Open Access

Salivary IL-4: A Bleeding Predictor on Probing in Descendants of Severe Periodontitis Patients

  • Mabelle Freitas Monteiro1
  • Hélvis Enri de Sousa Paz1
  • Larissa Bizarre1
  • Gabriela Martin Bonilha1
  • Marcio Zaffalon Casati1
  • Renato Corrêa Viana Casarin1,*,

1Department of Prosthodontics and Periodontics, Periodontics Division, Piracicaba Dental School, P.O. BOX 52 University of Campinas – UNICAMP. Avenida Limeira 901, Piracicaba, SP, Brazil

DOI: 10.17796/1053-4625-46.2.7 Vol.46,Issue 2,March 2022 pp.132-136

Published: 01 March 2022

*Corresponding Author(s): Renato Corrêa Viana Casarin E-mail: rcasarin@unicamp.br

Abstract

Objective: Periodontitis in younger patients can cause severe periodontal destruction, and cases are usually more numerous in members of the same family due to the sharing of susceptibility factors. Thus, the use of a familial study design could improve our understanding of initial alterations in periodontal tissue. This observational study aimed to evaluate the salivary inflammatory pattern in descendants of periodontitis patients and identify any correlation with the clinical periodontal condition. Study design: Fifteen children of Generalized Aggressive Periodontitis (GAgP) patients and 15 children with periodontally healthy parents were evaluated for their plaque index (PI), gingival index (GI), bleeding on probing (BoP), and probing depth (PD). The concentrations of interferon (IFN)-γ, interleukin (IL)-10, IL-17, IL-1β, IL-4, and tumor necrosis factor (TNF)-α were measured in unstimulated saliva using the Luminex MAGPix platform. Results: Children from the GAgP group presented higher probing depth (PD) and bleeding on probing (BoP) (p<0.05) and lower release of IL-4 in saliva (p<0.05) than the periodontally healthy group. The cytokines IL-10, IFN-ɣ, IL-17, and IL-4 were negatively correlated with the gingival index, while IL-4 was negatively correlated with BoP. A regression analysis revealed that salivary IL-4 and plaque were predictors of BoP. Conclusions: Children of GAgP parents presented lower salivary IL-4 and higher BoP and PD than children from periodontally healthy families. Additionally, salivary IL-4 was a predictor of bleeding on probing in the children, suggesting that the lower presence of this anti-inflammatory cytokine is related to higher clinical inflammation.


Keywords

Disease susceptibility; Family; IL-4; Inflammation; Periodontal disease; Saliva

Cite and Share

Mabelle Freitas Monteiro,Hélvis Enri de Sousa Paz,Larissa Bizarre,Gabriela Martin Bonilha, Marcio Zaffalon Casati,Renato Corrêa Viana Casarin. Salivary IL-4: A Bleeding Predictor on Probing in Descendants of Severe Periodontitis Patients. Journal of Clinical Pediatric Dentistry. 2022. 46(2);132-136.

References

1. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(December):1. doi:10.1038/s41579-018-0089-x

2. Van Dyke TE, Bartold PM, Reynolds EC. The Nexus Between Periodontal Inflammation and Dysbiosis. Front Immunol. 2020;11. doi:10.3389/ fimmu.2020.00511

3. Armitage GC. Development of a Classification System for Periodontal Diseases and Conditions. Ann Periodontol. 1999;4(1):1-6. https://onlinelibrary.wiley.com/doi/pdf/10.1902/annals.1999.4.1.1

4. Meng H, Ren X, Tian Y, et al. Genetic study of families affected with aggressive periodontitis. Periodontol 2000. 2011;56(1):87-101. doi:10.1111/j.1600-0757.2010.00367.x

5. Michalowicz BS, Diehl SR, Gunsolley JC, et al. Evidence of a Substantial Genetic Basis for Risk of Adult Periodontitis. J Periodontol. 2000;71(11):1699-1707. doi:10.1902/jop.2000.71.11.1699

6. Monteiro M, Casati MZ, Taiete T, et al. Periodontal clinical and microbiological characteristics in healthy versus generalized aggressive periodontitis families. J Clin Periodontol. 2015;42(10):914-921. doi:10.1111/ jcpe.12459

7. Monteiro MF, Casati MZ, Sallum EA, Silvério KG, Nociti FH, Casarin RCV. The familial trend of the local inflammatory response in periodontal disease. Oral Dis. Published online November 30, 2020:odi.13738. doi:10.1111/odi.13738

8. Monteiro MF, Tonelli H, Reis AA, et al. Triclosan toothpaste as an adjunct therapy to plaque control in children from periodontitis families: a crossover clinical trial. Clin Oral Investig. 2020;24(4):1421-1430. doi:10.1007/s00784-019-03121-6

9. Monteiro MF, Altabtbaei K, Kumar PS, et al. Parents with periodontitis impact the subgingival colonization of their offspring. Sci Rep. 2021;11(1):1357. doi:10.1038/s41598-020-80372-4

10. Shaddox LM, Miller K. Periodontal Disease in Children and Adolescents: A masked Reality! Pediatr Dent Care. 2017;2(1):131.

11. Woźniak M, Paluszkiewicz C, Kwiatek WM. Saliva as a non-invasive material for early diagnosis. Acta Biochim Pol. 2019;66(4):383-388. doi:10.18388/abp.2019_2762

12. Jaedicke KM, Preshaw PM, Taylor JJ. Salivary cytokines as biomarkers of periodontal diseases. Periodontol 2000. 2016;70(1):164-183. doi:10.1111/ prd.12117

13. Ji S, Choi Y. Point-of-care diagnosis of periodontitis using saliva: technically feasible but still a challenge. Front Cell Infect Microbiol. 2015;5:65. doi:10.3389/fcimb.2015.00065

14. Van Dyke TE, Sima C. Understanding resolution of inflammation in periodontal diseases: Is chronic inflammatory periodontitis a failure to resolve? Periodontol 2000. 2020;82(1):205-213. doi:10.1111/prd.12317

15. Diesch T, Filippi C, Fritschi N, Filippi A, Ritz N. Cytokines in saliva as biomarkers of oral and systemic oncological or infectious diseases: A systematic review. Cytokine. 2021;143:155506. doi:10.1016/j.cyto.2021.155506

16. Ebersole JL, Schuster JL, Stevens J, et al. Patterns of Salivary Analytes Provide Diagnostic Capacity for Distinguishing Chronic Adult Periodontitis from Health. J Clin Immunol. 2013;33(1):271-279. doi:10.1007/s10875-012-9771-3

17. Chen Y, Wong WK, Seneviratne JC, Huang S, McGrath C, Hagg U. Associations between salivary cytokines and periodontal and microbiological parameters in orthodontic patients. Medicine (Baltimore). 2021;100(10):e24924. doi:10.1097/MD.0000000000024924

18. Yue Y, Liu Q, Xu C, et al. Comparative evaluation of cytokines in gingival crevicular fluid and saliva of patients with aggressive periodontitis. Int J Biol Markers. 2013;28(1):108-112. doi:10.5301/jbm.5000014

19. Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant diseases and conditions – Introduction and key changes from the 1999 classification. J Clin Periodontol. 2018;45(March):S1-S8. doi:10.1111/jcpe.12935

20. Ainamo J, Bay I. Problems and proposals for recording gingivitis and plaque. Int Dent J. 1975;25(4):229-235.

21. Mühlemann H, Son S. Gingival sulcus bleeding—a leading symptom in initial gingivitis. Helv Odontol Acta. 1971;15(2):107-113.

22. Monteiro MF, Casati MZ, Taiete T, et al. Salivary carriage of periodontal pathogens in generalized aggressive periodontitis families. Int J Paediatr Dent. 2014;24(2):113-121. doi:10.1111/ipd.12035

23. Pähkla ER, Jõgi E, Nurk A, et al. Periodontal disease in mothers indicates risk in their children. Int J Paediatr Dent. 2010;20(1):24-30. doi:10.1111/j.1365-263X.2009.01027.x

24. Ujiie Y, Karakida T, Yamakoshi Y, Ohshima T, Gomi K, Oida S. Interleukin-4 released from human gingival fibroblasts reduces osteoclastogenesis. Arch Oral Biol. 2016;72:187-193. doi:10.1016/j.archoralbio.2016.08.024

25. te Velde AA, Huijbens RJ, Heije K, de Vries JE, Figdor CG. Interleukin-4 (IL-4) inhibits secretion of IL-1 beta, tumor necrosis factor-alpha, and IL-6 by human monocytes. Blood. 1990;76(7):1392-1397. http://www.ncbi.nlm.nih.gov/pubmed/2119829

26. Shapira L, Van Dyke TE, Hart TC. A localized absence of interleukin-4 triggers periodontal disease activity: A novel hypothesis. Med Hypotheses. 1992;39(4):319-322. doi:10.1016/0306-9877(92)90056-I

27. Araujo-Pires AC, Vieira AE, Francisconi CF, et al. IL-4/CCL22/CCR4 Axis Controls Regulatory T-Cell Migration That Suppresses Inflammatory Bone Loss in Murine Experimental Periodontitis. J Bone Miner Res. 2015;30(3):412-422. doi:10.1002/jbmr.2376

28. Robati M, Ranjbari A, Ghafourian Boroujerdnia M, Chinipardaz Z. Detection of IL-4, IL-6 and IL-12 serum levels in generalized aggressive periodontitis. Iran J Immunol. 2011;8(3):170-175. doi:IJIv8i3A4

29. Bastos MF, Lima JA, Vieira PM, Mestnik MJ, Faveri M, Duarte PM. TNF-alpha and IL-4 levels in generalized aggressive periodontitis subjects. Oral Dis. 2009;15(1):82-87. doi:10.1111/j.1601-0825.2008.01491.x

30. Martins ES, César-Neto JB, Albuquerque-Souza E, et al. One-year follow-up of the immune profile in serum and selected sites of generalized and localized aggressive periodontitis. Cytokine. 2019;116(January):27-37. doi:10.1016/j.cyto.2018.12.019

31. Lang NP, Schätzle MA, Löe H. Gingivitis as a risk factor in periodontal disease. J Clin Periodontol. 2009;36(SUPPL. 10):3-8. doi:10.1111/j.1600-051X.2009.01415.x

32. Tanner ACR, Kent R, Kanasi E, et al. Clinical characteristics and microbiota of progressing slight chronic periodontitis in adults. J Clin Periodontol. 2007;34(11):917-930. doi:10.1111/j.1600-051X.2007.01126.x


Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

PubMed (MEDLINE) PubMed comprises more than 35 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full text content from PubMed Central and publisher web sites.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Scopus: CiteScore 2.0 (2022) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.

Submission Turnaround Time

Conferences

Top