Title
Author
DOI
Article Type
Special Issue
Volume
Issue
Salivary Urease and ADS Enzymatic Activity as Endogenous Protection against Dental Caries in Children
1Universidad Mayor, Alameda Bernardo O´Higgins 2013, Santiago, Chile.
*Corresponding Author(s): Moncada G E-mail: gmoncada@adsl.tie.cl
The aim of this cross sectional study was to evaluate the ureolytic and arginolytic activities of saliva in children and associate them with their caries status. Study design: 65, 8 year old children, were randomly selected. The ureolytic and arginolytic activity of non stimulated saliva was studied and associated with DMFT and dmft index. Saliva of children were sampled under fasting conditions; Children refrained from any oral hygiene procedures during the 12 hours that preceded the sample collection. Caries activity was scored and divided in 3 groups: Group A: Index zero: without lesions; Group B: Moderate Index: 1 to 3 enamel caries lesions; and Group C: High Index: more than 4 dentin caries lesions. Results: DMFT scores were moderate: 0.4(±0.79) and dmft: 2.78(±2.45). Results expressed in µmol/min/mg/protein, for urease activity were statistically significant (p=0.048): Group A= 0.69 (±0.7); Group B= 0.45 (±0.43); and Group C= 0.39 (±0.55). The arginine deiminase activity was not statistically significant (p=0.16): Group A= 2.53 (±1.42), Group B= 2.31 (±1.57) and Group C= 1.97 (±2.0). Conclusion: Higher levels of ureolytic (statistically significant) and arginolytic activity (trend) in saliva were associated with lower DMFT/dmft scores in 8 year old children. There was a higher production of ammonia from the arginine deiminase system than the urease enzyme in saliva (p>0.05).
children, caries, DMFT/dmft, urea, arginina, urease, ADS.
Moncada G, Maureira J,Neira M,Reyes E,Oliveira Junior OB,Faleiros S,Palma P,Corsini G,Ugalde C,Gordan VV,Yevenes I. Salivary Urease and ADS Enzymatic Activity as Endogenous Protection against Dental Caries in Children. Journal of Clinical Pediatric Dentistry. 2015. 39(4);358-363.
1. Petersen, P. E.; Bourgeois, D.; Ogawa, H.; Estupinan-Day, S.; Ndiaye, C., The global burden of oral diseases and risks to oral health. Bull World Health Organ, 83, (9), 661-9. 2005.
2. Petersen, P. E., The World Oral Health Report 2003: continuous improvement of oral health in the 21st century--the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol, 31 Suppl 1, 3-23. 2003.
3. Urzua, I.; Mendoza, C.; Arteaga, O.; Rodríguez, G.; Cabello, R.; Faleiros, S.; Carvajal, P.; Muñoz, A.; Espinoza, I.; Aranda, W.; Gamonal, J., Dental caries prevalence and tooth loss in chilean adult population: first national dental examination survey. Int J Dent, 2012, 810170. 2012.
4. Services, U. D. o. H. a. H., Oral Health in America: A Report of the Surgeon General. Rockville: US Department of Health and Human Services, National Institute of Dental and Cranio Facial Research, National Institute of Health. In 2000.
5. Fejerskov, O., Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res, 38, (3), 182-91. 2004.
6. Burne, R. A., Oral streptococci... products of their environment. J Dent Res 1998, 77, (3), 445-52.
7. van Houte, J.; Lopman, J.; Kent, R., The predominant cultivable flora of sound and carious human root surfaces. J Dent Res, 73, (11), 1727-34. 1994.
8. Marsh, P. D., Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res, 8, (2), 263-71. 1994.
9. Bradshaw, D. J.; McKee, A. S.; Marsh, P. D., Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. J Dent Res, 68, (9), 1298-302. 1989.
10. Dennis, D. A.; Gawronski, T. H.; Sudo, S. Z.; Harris, R. S.; Folke, L. E., Variations in microbial and biochemical components of four-day plaque during a four-week controlled diet period. J Dent Res, 54, (4), 716-22. 1975.
11. Featherstone, J. D., The science and practice of caries prevention. J Am Dent Assoc, 131, (7), 887-99. 2000.
12. Loesche, W. J., Role of Streptococcus mutans in human dental decay. Microbiol Rev, 50, (4), 353-80. 1986.
13. Gordan, V. V.; Garvan, C. W.; Ottenga, M. E.; Schulte, R.; Harris, P. A.; McEdward, D.; Magnusson, I., Could alkali production be considered an approach for caries control? Caries Res, 44, (6), 547-54. 2010.
14. Burne, R. A.; Marquis, R. E., Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 2000, 193, (1), 1-6.
15. Nascimento, M. M.; Browngardt, C.; Xiaohui, X.; Klepac-Ceraj, V.; Paster, B. J.; Burne, R. A., The effect of arginine on oral biofilm communities. Mol Oral Microbiol, 29, (1), 45-54. 2014.
16. Liu, Y.; Tjäderhane, L.; Breschi, L.; Mazzoni, A.; Li, N.; Mao, J.; Pashley, D. H.; Tay, F. R., Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res, 90, (8), 953-68. 2011.
17. Nascimento, M. M.; Gordan, V. V.; Garvan, C. W.; Browngardt, C. M.; Burne, R. A., Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol Immunol, 24, (2), 89-95. 2009.
18. Liu, Y. L.; Nascimento, M.; Burne, R. A., Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int J Oral Sci, 4, (3), 135-40. 2012.
19. Morou-Bermudez, E.; Elias-Boneta, A.; Billings, R. J.; Burne, R. A.; Garcia-Rivas, V.; Brignoni-Nazario, V.; Suarez-Perez, E., Urease activity in dental plaque and saliva of children during a three-year study period and its relationship with other caries risk factors. Arch Oral Biol, 56, (11), 1282-9. 2011.
20. Chen, Y. Y.; Clancy, K. A.; Burne, R. A., Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect Immun, 64, (2), 585-92. 1996.
21. Kleinberg, I., A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit Rev Oral Biol Med, 13, (2), 108-25. 2002.
22. AL, D., Etiology and pathogenesis of periodontal disease. first ed. ed.; Springer-Verlag: Berlin, 2010; Vol. 1.
23. Reyes, E.; Martin, J.; Moncada, G.; Neira, M.; Palma, P.; Gordan, V.; Oyarzo, J. F.; Yevenes, I., Caries-free subjects have high levels of urease and arginine deiminase activity. J Appl Oral Sci, 22, (3), 235-40. 2014.
24. Sissons, C. H.; Wong, L.; Shu, M., Factors affecting the resting pH of in vitro human microcosm dental plaque and Streptococcus mutans biofilms. Arch Oral Biol, 43, (2), 93-102. 1998.
25. Sissons, C. H.; Perinpanayagam, H. E.; Hancock, E. M.; Cutress, T. W., pH regulation of urease levels in Streptococcus salivarius. J Dent Res, 69, (5), 1131-7. 1990.
26. Clancy, K. A.; Pearson, S.; Bowen, W. H.; Burne, R. A., Characterization of recombinant, ureolytic Streptococcus mutans demonstrates an inverse relationship between dental plaque ureolytic capacity and cariogenicity. Infect Immun, 68, (5), 2621-9. 2000.
27. Clancy, A.; Burne, R. A., Construction and characterization of a recombinant ureolytic Streptococcus mutans and its use to demonstrate the relationship of urease activity to pH modulating capacity. FEMS Microbiol Lett, 151, (2), 205-11. 1997.
28. Shu, M.; Morou-Bermudez, E.; Suárez-Pérez, E.; Rivera-Miranda, C.; Browngardt, C. M.; Chen, Y. Y.; Magnusson, I.; Burne, R. A., The relationship between dental caries status and dental plaque urease activity. Oral Microbiol Immunol, 22, (1), 61-6. 2007.
29. Peterson, S.; Woodhead, J.; Crall, J., Caries resistance in children with chronic renal failure: plaque pH, salivary pH, and salivary composition. Pediatr Res, 19, (8), 796-9. 1985.
30. Kleinberg, I., A new saliva-based anticaries composition. Dent Today, 18, (2), 98-103. 1999.
31. Wijeyeweera, R. L.; Kleinberg, I., Arginolytic and ureolytic activities of pure cultures of human oral bacteria and their effects on the pH response of salivary sediment and dental plaque in vitro. Arch Oral Biol, 34, (1), 43-53. 1989.
32. Simón-Soro, A.; Belda-Ferre, P.; Cabrera-Rubio, R.; Alcaraz, L. D.; Mira, A., A tissue-dependent hypothesis of dental caries. Caries Res, 47, (6), 591-600. 2013.
33. Liu, Y.; Zeng, L.; Burne, R. A., AguR is required for induction of the Streptococcus mutans agmatine deiminase system by low pH and agmatine. Appl Environ Microbiol 2009, 75, (9), 2629-37.
34. Hojo, S.; Komatsu, M.; Okuda, R.; Takahashi, N.; Yamada, T., Acid profiles and pH of carious dentin in active and arrested lesions. J Dent Res, 73, (12), 1853-7. 1994.
35. Epstein, S. R.; Mandel, I.; Scopp, I. W., Salivary composition and calculus formation in patients undergoing hemodialysis. J Periodontol, 51, (6), 336-8. 1980.
36. Martins, C.; Siqueira, W. L.; Oliveira, E.; Nicolau, J.; Primo, L. G., Dental calculus formation in children and adolescents undergoing hemodialysis. Pediatr Nephrol, 27, (10), 1961-6. 2012.
37. Acevedo AM, M. M., Rojas-Sánchez F, Machado F, Rivera LE, Wolff M, Kleinberg L., Clinical evaluation of the ability of CaviStat in a mint confection to inhibit the development of dental caries in children. J Clin Dent 19, (1), 1-8. 2008.
38. Acevedo AM; Machado C; Rivera LE; Wolff M; I., K., The inhibitory effect of an arginine bicarbonate/calcium carbonate CaviStat-containing dentifrice on the development of dental caries in Venezuelan school children. J Clin dent, 16, (3), 63-70. 2005.
39. Wolff, M.; Corby, P.; Klaczany, G.; Santarpia, P.; Lavender, S.; Gittins, E.; Vandeven, M.; Cummins, D.; Sullivan, R., In vivo effects of a new dentifrice containing 1.5% arginine and 1450 ppm fluoride on plaque metabolism. J Clin Dent, 24 Spec no A, A45-54. 2013.
40. Hu, D. Y.; Yin, W.; Li, X.; Feng, Y.; Zhang, Y. P.; Cummins, D.; Mateo, L. R.; Ellwood, R. P., A clinical investigation of the efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride, as sodium monofluorophosphate in a calcium base, on primary root caries. J Clin Dent, 24 Spec no A, A23-31. 2013.
41. Cantore, R.; Petrou, I.; Lavender, S.; Santarpia, P.; Liu, Z.; Gittins, E.; Vandeven, M.; Cummins, D.; Sullivan, R.; Utgikar, N., In situ clinical effects of new dentifrices containing 1.5% arginine and fluoride on enamel de- and remineralization and plaque metabolism. J Clin Dent, 24 Spec no A, A32-44. 2013.
42. Yin, W.; Hu, D. Y.; Fan, X.; Feng, Y.; Zhang, Y. P.; Cummins, D.; Mateo, L. R.; Pretty, I. A.; Ellwood, R. P., A clinical investigation using quantitative light-induced fluorescence (QLF) of the anticaries efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride as sodium monofluorophosphate. J Clin Dent, 24 Spec no A, A15-22. 2013.
43. Souza, M. L.; Cury, J. A.; Tenuta, L. M.; Zhang, Y. P.; Mateo, L. R.; Cummins, D.; Ellwood, R. P., Comparing the efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride to a dentifrice containing 1450 ppm fluoride alone in the management of primary root caries. J Dent, 41 Suppl 2, S35-41. 2013.
44. Srisilapanan, P.; Korwanich, N.; Yin, W.; Chuensuwonkul, C.; Mateo, L. R.; Zhang, Y. P.; Cummins, D.; Ellwood, R. P., Comparison of the efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride to a dentifrice containing 1450 ppm fluoride alone in the management of early coronal caries as assessed using Quantitative Light-induced Fluorescence. J Dent, 41 Suppl 2, S29-34. 2013.
45. Kleinberg, I., Effect of urea concentration on human plaque pH levels in situ. Arch Oral Biol, 12, (12), 1475-84. 1967.
46. Dawes, C.; Dibdin, G. H., Salivary concentrations of urea released from a chewing gum containing urea and how these affect the urea content of gel-stabilized plaques and their pH after exposure to sucrose. Caries Res, 35, (5), 344-53. 2001.
47. Bradshaw, D. J.; Marsh, P. D., Analysis of pH-driven disruption of oral microbial communities in vitro. Caries Res, 32, (6), 456-62. 1998.
48. Burne, R. A.; Ahn, S. J.; Wen, Z. T.; Zeng, L.; Lemos, J. A.; Abranches, J.; Nascimento, M., Opportunities for disrupting cariogenic biofilms. Adv Dent Res, 21, (1), 17-20. 2009.
49. van Ruyven, F. O.; Lingström, P.; van Houte, J.; Kent, R., Relationship among mutans streptococci, “low-pH” bacteria, and lodophilic polysaccharide-producing bacteria in dental plaque and early enamel caries in humans. J Dent Res, 79, (2), 778-84. 2000.
50. Park, I. S.; Hausinger, R. P., Evidence for the presence of urease apoprotein complexes containing UreD, UreF, and UreG in cells that are competent for in vivo enzyme activation. J Bacteriol, 177, (8), 1947-51. 1995.
51. Park, I. S.; Hausinger, R. P., Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter. Science, 267, (5201), 1156-8. 1995.
52. Park, I. S.; Carr, M. B.; Hausinger, R. P., In vitro activation of urease apoprotein and role of UreD as a chaperone required for nickel metallocenter assembly. Proc Natl Acad Sci U S A, 91, (8), 3233-7. 1994.
53. Liu, Y.; Hu, T.; Jiang, D.; Zhang, J.; Zhou, X., Regulation of urease gene of Actinomyces naeslundii in biofilms in response to environmental factors. FEMS Microbiol Lett, 278, (2), 157-63. 2008.
54. Liy, Y.; Yaling, L.; Dan, J.; Tao, H.; Xuedong, Z., Regulation of urease expression of Actinomyces naeslundii in biofilms in response to pH and carbohydrate. Oral Microbiol Immunol, 23, (4), 315-9. 2008.
55. Barcelona-Andrés, B.; Marina, A.; Rubio, V., Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J Bacteriol, 184, (22), 6289-300. 2002.
56. Dong, Y.; Chen, Y. Y.; Snyder, J. A.; Burne, R. A., Isolation and molecular analysis of the gene cluster for the arginine deiminase system from Streptococcus gordonii DL1. Appl Environ Microbiol, 68, (11), 5549-53. 2002.
57. Liu, Y.; Dong, Y.; Chen, Y. Y.; Burne, R. A., Environmental and growth phase regulation of the Streptococcus gordonii arginine deiminase genes. Appl Environ Microbiol, 74, (16), 5023-30. 2008.
58. Dong, Y.; Chen, Y. Y.; Burne, R. A., Control of expression of the arginine deiminase operon of Streptococcus gordonii by CcpA and Flp. J Bacteriol, 186, (8), 2511-4. 2004.
59. Jakubovics, N. S.; Gill, S. R.; Iobst, S. E.; Vickerman, M. M.; Kolenbrander, P. E., Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol, 190, (10), 3646-57. 2008.
60. Nascimento, M. M.; Liu, Y.; Kalra, R.; Perry, S.; Adewumi, A.; Xu, X.; Primosch, R. E.; Burne, R. A., Oral arginine metabolism may decrease the risk for dental caries in children. J Dent Res, 92, (7), 604-8. 2013.
Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.
Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.
Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.
JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.
Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.
BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.
Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.
Scopus: CiteScore 1.8 (2023) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.
Top