Article Data

  • Views 1071
  • Dowloads 145

Original Research

Open Access

Decreasing Cariogenic Bacteria with a Natural, Alternative Prevention Therapy utilizing Phytochemistry (Plant Extracts)

  • Ramakrishna Y1,*,
  • Goda H1
  • Baliga MS2
  • Munshi AK3

1Dept. of Pedodontics and Preventive Dentistry, K. D. Dental College and Hospital, Mathura, U.P, INDIA

2Dept. of Pedodontics and Preventive Dentistry, Sharad Pawar Dental College and Hospital, Wardha, Maharashtra, INDIA

3Dept. of Pedodontics and Preventive Dentistry, Dean, Director and Principal, K. D. Dental College and Hospital, Mathura, U.P, INDIA

DOI: 10.17796/jcpd.36.1.f485870h90174311 Vol.36,Issue 1,January 2012 pp.55-64

Published: 01 January 2012

*Corresponding Author(s): Ramakrishna Y E-mail: drramakrishnay@indiatimes.com kittypedo@yahoo.com

Abstract

The association between the oral microbiota and oral diseases is well established. Various antimicrobial agents including antibiotics are commercially available against oral pathogenic bacteria. For the reasons of antibiotic resistance, their adverse effects and financial considerations in the developing countries, there is a need for alternate preventive and curative treatment options that are also safe, effective and economical. Traditional medicines have been used since ancient times for the treatment of oral diseases including dental caries, periodontal diseases that affect the majority of the population and can affect a person's overall health. Natural phytochemicals are certain organic components isolated from plants and some of these extracts are considered to be beneficial to health. They serve as antioxidants, enhance immune response,provide protection against oral cancer and other diseases and also repair DNA damage caused by smoking and other toxic exposure, and detoxify carcinogens. The natural products derived from medicinal plants have proven to be an abundant source of biologically active compounds, many of which have been the basis for the development of new lead chemicals for pharmaceuticals.They are considered to be good alternatives to synthetic chemicals. This article presents a review of natural alternatives derived from plants and plant products that can serve as a prevention and treatment option against cariogenic bacteria.

Keywords

Plant extracts, Phytochemicals, Oral microflora, Antimicrobial efficacy, Phytosomes, Cariogenic bacteria

Cite and Share

Ramakrishna Y,Goda H,Baliga MS,Munshi AK. Decreasing Cariogenic Bacteria with a Natural, Alternative Prevention Therapy utilizing Phytochemistry (Plant Extracts). Journal of Clinical Pediatric Dentistry. 2012. 36(1);55-64.

References

1. Petersen  PE.  The  World  Oral  Health  Report  2003:  continuous improvement of oral health in the 21st century – The approach of the WHO  Global  Oral  Health  Programme.  Community  Dent  Oral  Epi-demiol, 31(Suppl. 1): 3–24, 2003.

2. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global  burden  of  oral  diseases  and  risks  to  oral  health.  Bull  World Health Organ, 83(9): 661–9, 2005.

3. Rautemaa R, Lauhio A, Cullinan MP, Seymour GJ. Oral infections and systemic disease- an emerging problem in medicine. Clin Microbiol Infect, 13(11): 1041–7, 2007.

4. Peterson PE. The burden of oral disease: challenges to improving oral health in the 21st century. Bull World Health Organ, 83(1): 3, 2005.

5. Jamieson LM, Parker EJ, Armfield JM. Indigenous child oral health at a  regional  and  state  level.  J  Paediatr  Child  Health,  43(3):  117–21, 2007.

6. Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends Microbiol, 13(12): 589–95, 2005.

7. Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res, 8(2): 263–271, 1994.

8. Kroes I, Leep PW, Relman DA. Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci USA, 96(25): 14547–14552, 1999.

9. Aas JA, Paster BJ, Stokes LN, Oslen I, Dewhirst FE. Defining the nor-mal  bacterial  flora  of  the  oral  cavity.  J  Clin  Microbiol,  43(11): 5721–5732, 2005.

10. Tencate JM. Biofilms, a new approach to the microbiology of dental plaque. Odontol, 94(1): 1–9, 2006.

11. Kerr WJS, Geddes DAM. The areas of various surfaces in the human mouth  from  nine  years  to  adulthood.  J  Dent  Res,  70(12):  1528–30, 1991.

12. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Micro-bial  complexes  in  subgingival  plaque.  J  Clin  Periodontol,  25(2): 134–44, 1998.

13. Haffajee AD, Socransky SS, Patel MR, Song X. Microbial complexes in  supragingival  plaque.  Oral  Microbiol  Immunol,  23(3):  196–205, 2008.

14. Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic tar-gets. Periodontol 2000, 28: 12–55, 2002.

15. Donlan  RM,  Costerton  JW.  Biofilms:  survival  mechanisms  of  clini-cally  relevant  microorganisms.  Clin  Microbiol  Rev,  15(2):  167–93, 2002.

16. Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science, 311 (5764): 1113–6, 2006.

17. Kolenbrander PE, London J. Adhere today, here tomorrow: oral bacte-rial adherence. J Bacteriol, 175(11): 3247–52, 1993.

18. Kreth J, Merritt J, Shi W, Qi F. Competition and coexistence between Streptococcus  mutans  and  Streptococcus  sanguinis  in  the  dental biofilm. J Bacteriol, 187(21): 7193–203, 2005.

19. Tsuda H, Yamashita Y, Shibata Y, Nakano Y, Koga T. Genes involved in Bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother, 46(12): 3756–64, 2002.

20. Tada A, Senpuku H, Motozawa Y, Yoshihara A, Hanada N, Tanzawa H. Association between commensal bacteria and opportunistic pathogens in the dental plaque of elderly individuals. Clin Microbiol Infect, 12: 776–81, 2006.

21. Bowden GHW, Ellwood DC, Hamilton IR. Microbial ecology of the oral cavity. In: Advances in microbial ecology, Alexander M, Ed., New York: Plenum. Press, 3: 135–217, 1979.

22. Chen  YY,  Clancy  KA,  Burne  RA.  Streptococcus  salivarius  urease: genetic  and  biochemical  characterization  and  expression  in  a  dental plaque Streptococcus. Infect Immun, 64(2): 585–92, 1996.

23. Sissons  CH, Yakub  S.  Supression  of  urease  levels  in  Streptococcus salivarius by cysteine, related compounds and by sulfide. Oral Micro-biol Immunol, 15: 317–24, 2000.

24. Kopstein  J,  Wrong  OM.  The  origin  and  fate  of  salivary  urea  and ammonia in man. Clin Sci Mol Med, 52(1): 9–17, 1977.

25. Golub LM, Borden SM, Kleinberg I. Urea content of gingival crevic-ular  fluid  and  its  relation  to  periodontal  disease  in  humans.  J  Peri-odontal Res, 6: 243–51, 1971.

26. Kleinberg I. Effect of urea concentration on human plaque pH levels in situ. Arch Oral Biol, 12: 1475–84, 1967.

27. Sissons CH, Cutress TW, Pearce EIF. Kinetics and product stoichiom-etry  of  ureolysis  by  human  salivary  bacteria  and  artificial  mouth plaques. Arch Oral Biol, 30: 781–90, 1985.

28. Sissons  CH,  Cutress  TW.  In  vitro  urea  dependent  pH  changes  by human  salivary  bacteria  and  dispersed  artificial  mouth  bacterial plaques. Arch Oral Biol, 32: 181–9, 1987.

29. Sissons CH, Perinpanayagam HER, Hancock EM, Cutress TW. pH reg-ulation of urease levels in Streptococcus salivarius. J Dent Res, 69(5): 1131–7, 1990.

30. Sissons CH, Perinpanayagam HER, Hancock EM. Processes involved in the regulation of urease levels in Streptococcus salivarius by pH. Oral Microbiol Immunol, 7: 159–64, 1992.

31. Badet C, Thebaud NB. Ecology of Lactobacilli in the oral cavity: A Review of literature. The Open Microbial J, 2: 38–48, 2008.

32. Meurman JH. Probiotics: do they have a role in oral medicine and den-tistry? Eur J Oral Sci, 113: 188–96, 2005.

33. Quwehand AC. Antimicrobial components from lactic acid bacteria. In Lactic  acid  bacteria:  microbiology  and  functional  aspects  2nd  ed., Salminen  S,  von  Wright A,  Ed.,  New  York:  Dekker  Inc:  139:  160, 1998.

34. Allaker  RP,  Douglas  CW.  Novel  anti-microbial  therapies  for  dental plaque- related diseases. Int J Antimicrob Agents, 33(1): 8–13, 2009.

35. Polonskaia MS. Antibiotic substances in acidophil bacteria. Mikrobi-ologiia, 21: 303–10, 1952.

36. Nase L, Hatakka K, Savilahti E, Saxelin M, Ponka A, Poussa T, Kor-pela R, Meurman JH. Effect of long term consumption of a probiotic bacterium, Lactobacillus Rhamnosus GG in milk on dental caries and caries risk in children. Caries Res, 35 (5): 412–20, 2001.

37. Ahola AJ,  Yli  Knuuttila  H,  Suomalainen  T,  Poussa  T, Ahlstrom A, Meurman JH, Korpela R. Short term consumption of probiotic- con-taining cheese and its effect on dental caries risk factors. Arch Oral Biol, 47(11): 799–804, 2002.

38. Nikawa H, Makihira S, Fukushima H, Nishimura H, Ozaki Y, Ishida K, Darmawan S, Hamada T, Hara K, Matwumoto A, Aimi R. Lacto-bacillus Reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci. Int J Food Microbiol, 95(2): 219–23, 2004.

39. Simark-Mattsson C, Emilson CG, Hakansson EG, Jacobsson C, Roos K,  Halm  S.  Lactobacillus-mediated  interference  of  mutans  strepto-cocci  in  caries-free  vs.  caries-active  subjects.  Eur  J  Oral  Sci,  115: 308–14, 2007.

40. Drucker DB, Green RM. The relative cariogenicity of different strep-tococci  in  the  gnotobiotic  WAG/RIJ  rat.  Arch  Oral  Biol,  26(7): 599–606, 1981.

41. John R, Prabhu NT, Munshi AK. Effect of short-term antibiotic ther-apy on salivary S. mutans levels in children. J Ind Soc Pedod Preven Dent, 14(4): 123–7, 1996.

42. Goodson JM, Tanner A. Antibiotic resistance of the subgingival micro-biota  following  local  tetracycline  therapy.  Oral  Microbiol  Immunol, 7(2): 113–7, 1992.

43. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science, 264: 375–82, 1994.

44. Preus HR, Lassen J, Aass AM et al. Bacterial resistance following sub-gingival and systemic administration of minocycline. J Clin Periodon-tol, 22: 380–4, 1995.

45. Gilbert P, Das J, Foley I. Biofilm susceptibility to antimicrobials. Adv Dent Res, 11: 160–7, 1997.

46. Tenover FC. Development and spread of bacterial resistance to antimi-crobial agents: an overview. Clin Infect Dis, 33: 108–15, 2001.

47. Roberts MC. Antibiotic toxicity, interactions and resistance develop-ment. Periodontal 2000, 28: 280–97, 2002.

48. Knoll-Kohler E, Stiebel J. Amine fluoride gel affects the viability and the  generation  of  superoxide  anions  in  human  polymorphonuclear leukocytes: an in vitro study. Eur J Oral Sci, 110: 296–301, 2002.

49. Lachenmeier DW. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J Occup Med Toxicol, 3: 26, 2008.

50. McCullough MJ, Farah CS. The role of alcohol in oral carcinogenesis with  particular  reference  to  alcohol-containing  mouthwashes.  Aust Dent J, 53(4): 302–5, 2008.

51. Neumegen RA, Fernandez-Alba AR, Chisti Y. Toxicities of triclosan, phenol, and copper sulfate in activated sludge. Environ Toxicol, 20(2): 160–4, 2005.

52. Tichy J, Novak J. Extraction, assay and analysis of antimicrobials from plants  with  activity  against  dental  pathogens  (Streptococcus  sp.).  J Altern Complement Med, 4(1): 39–45, 1998.

53. Badria FA, Zidan OA. Natural products for dental caries prevention. J Med Food, 7(3): 381–4, 2004.

54. Cowan  MM.  Plant  products  as  antimicrobial  agents.  Clin  Microbiol Rev, 12(4): 564–82, 1999.

55. Kalemba  D,  Kunicka  A.  Antibacterial  and  antifungal  properties  of essential oils. Curr Med Chem, 10(10): 813–29, 2003.

56. Kim  HS.  Do  not  put  too  much  value  on  conventional  medicines.  J Ethnopharmacol, 100(1-2): 37–9, 2005.

57. Tsao TF, Newnan MG, Kwok YY, Horikoshi AK. Effetc of Chinese and western antimicrobial agents on selected oral bacteria. J Dent Res, 61(9): 1103–6, 1982.

58. Hwang JK, Shim JS, Pyun YR. Antibacterial activity of xanthorrhizol from Curcuma xanthorrhiza against oral pathogens. Fitoterapia, 71(3); 321–3, 2000.

59. Hu JP, Takahashin N, Yamada T. Coptidis rhizome inhibits growth and proteases of oral bacteria. Oral Dis, 6(5): 297–302, 2000.

60. Kastura H, Tsukiyama RI, Suzuki A, Kobayashi M. In vitro antimicro-bial activities of bakuchiol against oral microorganisms. Antimicrob Agents Chemother, 45(11): 3009–13, 2001.

61. Hwang  JK,  Chung  JY,  Baek  NI,  Park  JH.  Isopanduratin  A  from Kaempferia  pandurata  as  an  active  antibacterial  agent  against  cario-genic Streptococcus mutancs. Int J Antimicrob Agents, 23(4): 377–81, 2004.

62. Xiao J, Liu Y, Zuo YL, Li JY, Ye L, Zhou XD. Effects of Nidus Ves-pae extract and chemical fractions on the growth and acidogenicity of oral microorganisms. Arch Oral Biol, 51(9): 804–13, 2006.

63. Song  JH,  Kim  SK,  Chang  KW,  Han  SK, Yi  HK,  Jeon  JG.  In  vitro inhibitory effects of Polygonum cuspidatum on bacterial viability and virulence factors of Streptococcus mutans and Streptococcus sobrinus. Arch Oral Biol, 51(12): 1131–40, 2006.

64. Liu  XT,  Pan  Q,  Shi Y, Williams  ID,  Sung  HH,  Zhang  Q  et  al.  ent-rosane and labdane diterpenoids from Sagittaria sagittifolia and their antibacterial activity against three oral pathogens. J Nat Prod, 69(2): 255–60, 2006.

65. Liu XT, Shi Y, Yu B, Williams ID, Sung HH, Zhang Q et al. Antibac-terial diterpenoids from Sagittaria pygmaea. Planta Med, 73(1): 84–90, 2007.

66. Wong RWK, Haqq U, Samaranayake L, Yuen MKZ, Seneviratne CJ, Kao  R.  Antimicrobial  activity  of  Chinese  medicine  herbs  against common  bacteria  in  oral  biofilm. A  Pilot  study.  Int  J  Oral  Maxillo Surg, 39: 599–605, 2010

67. Hirasawa M, Shouji, N, Neta T, Fukushima K, Takeda K. Three kinds of  antibacterial  components  from  Lentinus  edodes  (Berk.).  Int  J Antimicrob Agents, 11(2): 151–7, 1999.

68. Yamada  Y,  Yamamoto  A,  Yoneda  N,  Nakatani  N.  Identification  of kaempferol  from  the  leaves  of  Diospyros  kaki  and  its  antimicrobial activity  against  Streptococcus  mutans.  Biocontrol  Sci,  4:  97–100, 1999.

69. Jayaprakasha,  Selve  GK,  Sakariah  K.  Antibacterial  and  antioxidant activities of grape (Vitis vinifera) seed extracts. Food Research Inter-national, 36(2): 117–22, 2003.

70. Wolinsky LE, Mania S, Nachnani S, Ling S. The inhibiting effect of aqueous.Azadirachta indica (Neem) extract upon bacterial properties influencing  in  vitro  plaque  formation.  J  Dent  Res,  75(2):  816–22, 1996.

71. Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum linn (Tulsi) with a note on eugenol and its pharmacological actions. A short review. Indian J Physiol Pharmacol, 49(2): 125–31, 2005.

72. Viyoch  J,  Pisutthanan  N,  Faikreua  A,  Nupangta  K,  Wangtorpol  K, Ngokkuen J. Evaluation of invitro antimicrobial activity of thai basil oils  and  their  micro-emulsion  formulae  against  Propionibacterium acnes. Int J Cosmet Sci, 28(2): 125–33, 2006.

73. Geeta, Vasudevan DM, Kedlaya R, Deepa S, Ballal M. Activity of Oci-mum sanctum (the traditional Indian medicinal plant) against enteric pathogens. Ind J Med Sci, 55(8): 434–8, 472, 2001.

74. Magesh V, Lee JC, Ahn KS, Lee HJ, Lee EO, Shim BS et al. Ocimum sanctum induces apoptosis in A549 lung cancer cells and suppresses the in vivo growth of Lewis lung cancer cells. Phytother Res, 23(10): 1385–91, 2009.

75. Pooja A,  Nagesh  L,  Murlikrishnan.  Evaluation  of  the  antimicrobial activity of various concentrations of Tulsi (Ocimum sanctum) extract against Streptococcus mutans: An in vitro study. Ind J Dent Res, 21(3): 357–9, 2010.

76. Hamilton-Miller  J.M.T.  Anti-cariogenic  properties  of  tea  (Camellia sinensis). J Med Microbiol, 50(4): 299–302, 2001.

77. Gianmaria F. Ferrazzano, Ivana Amato, Aniello Ingenito, Antonino De Natale, Antonino Pollio. Anti-cariogenic effects of polyphenols from plant  stimulant  beverages  (cocoa,  coffee,  tea).  Fitoterapia,  80(5): 255–62, 2009.

78. Fischer E, Stahel R. Zur Kenntniss der Xylose. Ber Dtsch Chem Ges, 24: 528–39, 1891.

79. Bertrand MG. Recherches zur quelques dérivés du xylose. Bull Soc Chim. Paris, 5: 554–7, 1891.

80. Scheinin A, Mäkinen KK, Ylitalo K. Turku sugar studies: I. An inter-mediate report on the effect of sucrose, fructose and xylitol diets on the caries incidence in man. Acta Odontol Sand, 32(6): 383–412, 1974.

81. Scheinin A, Mäkinen KK. The effect of various sugars on the forma-tion  and  chemical  composition  of  dental  plaque.  Int  Dent  J,  21: 302–21, 1971.

82. Scheinin A, Mäkinen KK. Effect of sugars and sugar mixtures on den-tal plaque. Acta Odontol Scand, 30(2): 235–57, 1972.

83. Mäkinen  KK,  Scheinin A.  Turku  sugar  studies:  II.  Preliminary  bio-chemical  and  general  findings. Acta  Odontol  Scand,  32(6):  413–21, 1974.

84. Mouton C, Scheinin A, Mäkinen KK. Effect of plaque on a xylitol con-taining  chewing  gum:  A  pilot  study.  Acta  Odontol  Scand,  33(1): 27–31, 1975.

85. Mouton C, Scheinin A, Mäkinen KK. Effect of plaque on a xylitol con-taining chewing gum: A clinical and biochemical study. Acta Odontol Scand, 33(1): 33–40, 1975.

86. Mouton C, Scheinin A, Mäkinen KK. Effect of a xylitol chewing gum on  plaque  quantity  and  quality. Acta  Odontol  Scand,  33(5):  251–7, 1975.

87. Scheinin  A,  Mäkinen  KK.  Eds.  Turku  sugar  studies.  Acta  Odontol Scand, 33(Suppl 70): 1–30, 1975.

88. Scheinin A, Bánóczy J. Xylitol and caries: the collaborative WHO oral disease  preventive  programme  in  Hungary.  Int  Dent  J,  35(1):  50–7, 1985.

89. Kandelman  D,  Gagnon  G.  Clinical  results  after  12  months  from  a study of the incidence and progression of dental caries in relation to consumption of chewing gum containing xylitol in school preventive programs. J Dent Res, 66(8): 1407–11, 1987.

90. Isokangas P, Alanen P, Tiekso J, Mäkinen KK. Xylitol chewing gum in caries prevention: a field study in children at caries-active ages. J Am Dent Assoc, 117(2): 315–20, 1988.

91. Mäkinen KK. New biochemical aspects of sweetners. Int Dent J, 35: 23–35, 1985.

92. Mäkinen KK, Isokangas P. Relationship between carbohydrate sweet-ners and oral diseases. Prog Food Nut Sci, 12: 73–109, 1988.

93. Edwardsson S, Berkhed D, Mejare B. Acid production from lycasin, maltitol, sorbitol and xylitol by oral streptococci and lactobacilli. Acta Odontol Scand, 35(5): 257–63, 1977.

94. Havenaar R, Huis In’t Veld JHJ, Backer Dirke O, de Stoppelaar JD. Some  bacteriological  aspects  of  sugar  substitutes.  In:  Guggenheim, Ed., Health and sugar substitutes. Basel: Karger, 192–8, 1979.

95. Mäkinen KK, Virtanen KK. Effect of 4.5 year use of xylitol and sor-bitol on plaque. J Dent Res, 57(3): 441–6, 1978.

96. Mäkinen KK, Söderling E, Hämäläinen K, Antonen P. Effect of long term use of xylitol on dental plaque. Proc Finn Dent Soc, 81(1): 28–35, 1985.

97. Assev  S,  Vegarud  G,  Rölla  G.  Growth  inhibition  of  streptococcus mutans  strain  OZM  176  by  xylitol. Acta  Pathol  Microbiol  Immunol Scand Sect B, 88: 61–3, 1980.

98. Vadeboncoeur C, Trahan L, Mouton C, Mayrand D. Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J Dent Res, 62(8): 882–4, 1983.

99. Trahan L, Bareil M, Gauther L, Vadeboncoeur C. Transport and phos-phorylation  of  xylitol  by  a  fructose  phosphotransferace  system  in streptococcus mutans. Caries Res, 19(1): 53–63, 1985.

100. Mäkinen  KK.  Latest  dental  studies  on  xylitol  and  mechanisms  of action of xylitol in caries limitation; In Grenby TH (Ed): Progress in sweeteners, London, Elsevier, 331–62, 1989.

101. Trahan L. Xylitol: a review of its action on mutans streptococci and dental  plaque  –  its  clinical  significance.  Int  Dent  J,  45  (1  Suppl  1): 77–92, 1995.

102. Mäkinen  KK.  Can  the  pentitol-hexitol  theory  explain  the  clinical observations made with xylitol? Med Hypotheses, 54: 603–13, 2000.

103. Milgrom P, Ly KA, Roberts MC, Rothen M, Meuller G, Yamaguchi DK. Mutans streptococci dose response to xylitol chewing gum. J Dent Res, 85(2): 177–81, 2006.

104. Mäkinen KK, Alanen PA, Isokangas P, Isotupa K, Söderling E, Mäki-nen PL, Wenhui W, Weijan W, Xiaochi C, Yi W, Boxue Z. Thirty-nine-month  xylitol  chewing  gum  programme  in  initially  eight  year  old school  children:  a  feasibility  study  focusing  on  mutans streptococci and lactobacilli. Int Dent J, 58(1): 41–50, 2008.

105. Loesche WJ, Grossman NS, Earnest R, Corpron R. The effect of chew-ing  xylitol  gum  on  the  plaque  and  salivary  levels  of  Streptococcus mutans. J Am Dent Assoc, 108(4): 587–92, 1984.

106. Mäkinen  KK.  Dietary  prevention  of  dental  caries  by  xylitol-clinical effectiveness and safety. J Appl Nutr, 44: 16–28, 1991.

107. Mäkinen  KK.  Prevention  of  dental  caries  with  xylitol-  A  potential dietary  procedure  for  self-care  and  population-level  use  in  young adults. J Am College Health, 41: 172–80, 1993.

108. Peldyak J, Mäkinen KK. Xylitol for caries prevention. J Dent Hygiene, 76(4): 276–85, 2002.

109. Sanchita  Bhattacharya,  Salima  Virani,  Mashenka  Zavro,  Gerhard  J. Haas. Inhibition of Streptococcus Mutans and Other Oral Streptococci by  Hop  (Humulus  Lupulus  L.)  Economic  Botany,  57(1):  118–25, 2003.

110. Yamanaka A, Kimizuka R, Kato T, Okuda K. Inhibitory effects of cran-berry juice on attachment of oral streptococci and biofilm formation. Oral Microbiol Immunol, 19(3): 150–4, 2004.

111. Chung JY, Choo JH, Lee MH, Hwang JK. Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Strepto-coccus mutans. Phytomedicine, 13(4): 261–6, 2006.

112. Bianchini,  Bedendo  IP.  Efeito  antibiótic  do  própolis  sobre  bactérias fitopatogênicas. Piracicaba: Scientia Agrícola; 1988.

113. Manara LRB, Anconi SI, Gromatzky A, conde MC, Bretz WA. Utiliza-ção da própolis em odotnologia. [The use of propolis in dentistry]. Rev Fac Odontol Bauru, 7(3/4): 15–20, 1999.

114. Silva EB. Efeito da a ção da própolis na lamina própria da mucosa buc-cal de ratos: estudo histologico. Robrac, 9(28): 4–8, 2000.

115. Fernandes A Jr, Orsi RO, Sforcin JM, Rall VLM, Funari SRC, Barbosa

L.  The antibacterial activity of propolis produced by Apis mellifera L. and  Brazilian  stingless  bees.  J  Venom  Anim  Toxins,  7(2):  173–82, 2001.

116. Koo H, Rosalen PL, Cury JA, Park YK, Bowen WH. Effects of com-pounds  found  in  propolis  on  Streptococccus  mutans  growth  and  on glucosyltransferace  activity.  Antimicrob  Agents  Chemother,  46(5): 1302–9, 2002.

117. Silvana Alves de CD, Azizedite GG, Fernando JMA. Effect of a propo-lis extract on Streptoccocus mutans counts in vivo. J Appl Oral Sci, 15(5): Bauru Sept/Oct, 2007.

118. Uzel A, Sorkun K, Oncag O, Cogulu D, Gencay O, Salih B. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol Res, 160(2): 189–95, 2005.

119. Feres M, Figueiredo LC, Barreto IM, Coelho MH, Araujo MW, Cortelli SC.  In  vitro  antimicrobial  activity  of  plant  extracts  and  propolis  in saliva  samples  of  healthy  and  periodontally-involved  subjects.  J  Int Acad Periodontol, 7(3): 90–6, 2005.

120. Menezes  SMS,  Cordeiro  LN,  Viana  GSB.  Punica  granatum  (pome-granate) extract is active against dental plaque. J Herb Pharmacother-apy, 6: 79–92, 2006.

121. Vasconcelos LCDS, Sampaio FC, Sampaio MCC, Pereira MDSV, Hig-ino JS, Peixoto MHP. Minimum inhibitory concentration of adherence of Punica granatum Linn (pomegranate) gel against S. mutans, S. mitis and C. albicans. Braz Dent J, 17(3): 223–7, 2006.

122. Sofrata  AH,  Claesson  RL,  Lingström  PK,  Gustafsson  AK.  Strong antibacterial effect of miswak against oral microorganisms associated with periodontitis and caries. J Periodontol, 79(8): 1474–9, 2008.

123. Akihiro O, Harafumie Saito ,Tsugio Matsuhisa. Screening of Antibac-terial Activities of Edible Plants against Streptococcus mutans. Food Sci Technol Res, 14 (2): 190–3, 2008.

124. Wu CD. Grape products and oral health. J Nutr, 139(9): 1818 ‘S’- 23 ‘S’, 2009.

125. Didry N, Dubreuil L, Trotin F, Pinkas M. Antimicrobial activity of aer-ial parts of Drosera peltata. Smith on oral bacteria. J Ethnopharmacol, 60(1): 91–6, 1998.

126. Hu JP, Takahashi N, Yamada T. Coptidis rhizoma inhibits growth and proteases of oral bacteria. Oral Dis, 6(5): 297–302, 2000.

127. Park  KM,  You  JS,  Lee  HY,  Baek  NI,  Hwang  JK.  Kuwanon  G, An antibacterial  agent  from  the  root  bark  of  Morus  alba  against  oral pathogens. J Ethnopharmacol, 84(2–3): 181–5, 2003.

128. Nostro  A,  Cannatelli  MA,  Crisafi  G,  Musolino  AD,  Procopio  F, Alonzo V. Modifications of hydrophobicity, in vitro adherence and cel-lular  aggregation  of  Streptococcus  mutans  by  Helichrysum  italicum extract. Lett Appl Microbiol, 38(5): 423–7, 2004.

129. Nagata H, Inagaki Y, Yamamoto Y, Maeda K, Kataoka K, Osawa K. Inhibitory  effects  of  macrocarpals  on  the  biological  activity  of  Por-phyromonas  gingivalis  and  other  periodontopathic  bacteria.  Oral Microbiol Immunol, 21(3): 159–63, 2006.

130. Sterer  N.  Antimicrobial  effect  of  mastic  gum  methanolic  extract against Porphyromonas gingivalis. J Med Food, 9(2): 290–2, 2006.

131. Prabu GR, Gnanamani A, Sadulla S. Guaijaverin. A plant flavonoid as potential  antiplaque  agent  against  Streptococcus  mutans.  J  Appl Microbiol, 101(2): 487–95, 2006.

132. Song  JH,  Kim  SK,  Chang  KW,  Han  SK, Yi  HK,  Jeon  JG.  In  vitro inhibitory effects of Polygonum cuspidatum on bacterial viability and virulence factors of Streptococcus mutans and Streptococcus sobrinus. Arch Oral Biol, 51(12): 1131–40, 2006.

133. Silva ML, Coimbra HS, Pereira AC, Almeida VA, Lima TC,Costa ES. Evaluation  of  Piper  cubeba  extract,  cubebin  and  its  semi-synthetic derivatives against oral pathogens. Phytother Res, 21(5): 420–2, 2007.

134. Smullen  J,  Koutsou  GA,  Foster  HA,  Zumbe  A,  Storey  DM.  The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res, 41(5): 342–9, 2007.

135. Tsui VW, Wong RW, Rabie AB. The inhibitory effects of naringin on the  growth  of  periodontal  pathogens  in  vitro.  Phytother  Res, 22(3): 401–6, 2008.

136. Bispo  MD,  Mourao  RHV,  Franzotti  EM  et  al.  Antinociceptive  and antiedematogenic  effects  of  the  abueous  extract  of  Hyptis  pectinata leaves in experimental animals. J Ethnopharmacol, 76(1): 81–6, 2001.

137. Alviano  WS,  Mendonca-Filho  RR, Alviano  DS  et  al. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms  and  planktonic  microorganisms.  Oral  Microbiol  Immunol, 20: 1–5, 2005.

138. Hammer KA, Dry L, Johnson M, Michalak EM, Carson CF, Riley TV. Susceptibility of oral bacteria to Melaleuca alternifolia (tea tree) oil in vitro. Oral Microbiol Immunol, 18(6): 389–92, 2003.

139. Shapiro  S,  Meir  A,  Guggenheim  B.  The  antimicrobial  activity  of essential oils and essential oil components towards oral bacteria. Oral Microbio Immunol, 9(4): 202–8, 1994.

140. Groppo FC, Bergamaschi C, Cogok, Franz-Montan M, Motta RH, de Andrade ED. Use of phytotherapy in dentistry. Phytother Res, 22(8): 993–8, 2008.

141. Sanjib Bhattacharya. Phytosomes: Emerging Strategy in Delivery of Herbal Drugs and Nutraceuticals. Pharma Times, 41 (3): 9–12, 2009.

142. Bombardelli E, Curri SB, Loggia RD, Del NP, Tubaro A, Gariboldi P. Complexes between phospholipids and vegetal derivatives of biologi-cal interest. Fitoterapia, 60: 1–9, 1989.

143. Murray. Phytosomes-Increase the absorption of herbal extract. Avail-able  at:  www.doctormurray.com/articles/silybin.htm  Accessed-Sept. 28, 2008.

144. Bombardelli E, Spelta M, Loggia RD, Sosa S, Tubaro A. Aging skin: Protective effect of silymarin-Phytosome. Fitoterapia, 62(2): 115–22, 1991.

145. Kidd P, Head K. A review of the bioavailability and clinical efficacy of milk thistle Phytosome: a silybinphosphatidylcholine complex. Altern Med Rev, 10(3): 193–203, 2005.

146. Yanyu x, Yunmei S, Zhipeng C, Quineng P. The preparation of sily-binphospholipid  complex  and  the  study  on  its  pharmacokinetics  in rats. Int J Pharm, 3; 307(1): 77–82, 2006.

147. Vitamedics, Phytosome products. Available at www.vitamedics.com. Accessed-Sept. 19, 2008.

148. Barzaghi N, Crema F, Gatti G, Pifferi G, Perucca E. Pharmacokinetic studies on IdB 1016, a silybin phosphatidylcholine complex in healthy human subjects. Eur J Drug Metab Pharmacokinet, 15: 333–8, 1990.

149. Bombardelli  E.  Phytosomes  in  functional  cosmetics.  Fitoterapia, 65(5): 320–7, 1994.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Scopus: CiteScore 1.8 (2023) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.

Submission Turnaround Time

Conferences

Top