Article Data

  • Views 701
  • Dowloads 163

Original Research

Open Access

Ingestion of Fluoride from Dentifrices by Young Children and Fluorosis of the Teeth – A Literature Review

  • Ekambaram M1
  • Itthagarun A2
  • King NM3,*,

1Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR

2Paediatric Dentsitry, School of Dentistry and Oral Health, Griffith University, Brisbane, Australia

3FHKAM (Dental Surgery), FCDSHK (Paediatric Dentistry), FDS RCS (Edin), FDS RCE (Eng), MRACDS (Paed), LDS RCS (Eng), Winthrop Professor, Paediatric Dentistry, School of Dentistry, Oral Health Centre of WA, Australia

DOI: 10.17796/jcpd.36.2.3106602470287130 Vol.36,Issue 2,March 2012 pp.111-122

Published: 01 March 2012

*Corresponding Author(s): King NM E-mail: nigel.king@uwa.edu.au

Abstract

The ADA recommends the use of fluoridated dentifrices as soon as the primary teeth erupt, so as to reduce the incidence of dental caries. However, young children can ingest a significant amount of dentifrice during normal toothbrushing; this is a potential problem because the permanent teeth are at risk from fluorosis for the first seven years of life. Aims: the objective of this paper was to review the literature on the role of fluoride dentifrices in causing dental fluorosis. Methods: Search strategy: a search for literature was performed using MEDLINE, OVID with the key words fluorosis, dentifrice, ingestion, and children. The search was limited to English language publications. Subsequently, 31 articles were retrieved, additional relevant articles were collected from the references cited in the initially identified papers. Ultimately, 96 articles were retrieved for review. Conclusions: Fluoride, should be used with caution so that the benefits out-way the adverse affects. Oral health care providers need to systematically assess individual tooth brushing habits and emphasize the advantages of early use of a fluoridated dentifrice whilst still meeting the need for the prudent use of small quantities of dentifrice. Dentifrices with a low concentration of fluoride may be appropriate for young children who are considered to be at low caries risk and the risk of fluorosis is minimal for children who ingest this dentifrice; nevertheless, it appears that more research is still required on the therapeutic effects of fluoride dentifrices which contain fluoride at a low concentration.

Keywords

fluorosis, children, dentifrice, ingestion

Cite and Share

Ekambaram M,Itthagarun A,King NM. Ingestion of Fluoride from Dentifrices by Young Children and Fluorosis of the Teeth – A Literature Review. Journal of Clinical Pediatric Dentistry. 2012. 36(2);111-122.

References

1. Heifetz  SB,  Driscoll  WB,  Horowitz  HS,  Kingman A.  Prevalence  of dental caries and dental fluorosis in areas with optimal and above opti-mal  water-fluoride  concentrations:  a  5-year  follow-up  survey.  J Am Dent Assoc, 116: 490–495, 1988.

2. Woltgens JH, Etty EJ, Nieuwland WM, Lyaruu DM. The use of fluo-ride by young children and prevalence of mottled enamel. Adv Dent Res, 3: 177–182, 1989.

3. Levy SM, Kohout FJ, Kiritsy MC, Heilman JR, Wefel JS. Infants fluo-ride  ingestion  from  water,  supplements  and  dentifrice.  J  Am  Dent Assoc, 126: 1625–1632, 1995.

4. Silverstone LM. Remineralisation phenomena. Caries Res, 11: 59–84, 1977.

5. Arends J, ten Cate JM. Tooth enamel remineralisation. J Cryst Growth, 53: 135–147, 1981.

6. Featherstone JDB, Glena R, Shariati M, Shields CP. Dependence of in vitro demineralization of apatite and remineralisation of dental enamel on fluoride concentrations. J Dent Res, 69: 620–625, 1990.

7. ten Cate JM, Arends J. Remineralization of artificial enamel lesions in vitro. Caries Res, 11: 277–286, 1977.

8. Silverstone LM, Wefel JS, Zimmerman BF, Clarkson BH, Featherstone MJ. Remineralisation of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid. Caries Res, 15: 138–157, 1981.

9. Stookey  GK,  DePaola  PF,  Featherstone  JD,  Fejerskov  O,  Moller  IJ, Rotberg S,  Stephen KW, Wefel JS. A critical review of the relative anti-caries  efficacy  of  sodium  fluoride  and  sodium  monofluorophosphate dentifrices. Caries Res, 27: 337–360, 1993.

10. Wefel JS, Jensen ME, Triolo PT, Faller RV, Hogan NM, Bowman WD. De/ remineralisation from sodium fluoride dentifrices. Am J Dent, 8: 217–220, 1995. 

11. Damato FA, Strang R, Stephen KW. Effect of fluoride concentration on remineralisation  of  carious  enamel:  An  in vitro pH-cycling  study. Caries Res, 24: 174–180, 1990.

12. Featherstone JD. Prevention and reversal of dental caries: Role of low level fluoride. Community Dent Oral Epidemiol, 27: 31–40, 1999.

13. ten  Cate  JM.  Current  concepts  on  the  theories  of  the  mechanism  of action of fluoride. Acta Odontol Scand, 57: 325–329, 1999.

14. Feagin FF. Calcium, phosphate, and fluoride deposition on enamel sur-faces. Calcif Tissues Res, 8: 154–164, 1971.

15. Featherstone JD, Cutress TW, Rodgers BE, Dennison PJ. Reminerali-sation  of  artificial  caries-like  lesions  in vivo by  a  self-administered mouthrinse or paste. Caries Res, 16: 235–242, 1982.

16. Mellberg JR, Mallon DE. Acceleration of remineralisation in vitro by sodium  monofluorophosphate  and  sodium  fluoride.  J  Dent  Res,  63: 1130–1135, 1984.

17. ten Cate JM, Duijsters PP. Alternating demineralization and remineral-isation of artificial enamel lesions. Caries Res, 16: 201–210, 1982. 

18. ten Cate JM, Duijsters PPE. Influence of fluoride in solution on tooth demineralization. I. Chemical data. Caries Res, 17: 193–199, 1983.

19. Muhler JC, Radike AW, Nebergall WH, Day HG. The effect of a stan-nous  fluoride-containing  dentifrice  on  caries  reduction  in  children.  J Dent Res, 33: 606–612, 1954.

20. Bratthall  D,  Hansel-Peterson  G,  Sundberg  H.  Reasons  for  the  caries decline:  what  do  the  experts  believe?  Eur  J  Oral  Sci, 104:  423–425, 1996.

21. WHO/FDI. Report of a working group convened jointly by the FDI and the WHO: changing patterns of oral health and implications for oral health manpower, Part I. Int Dent J, 35: 235–251, 1985.

22. Holt  RD,  Murray  JJ.  Developments  in  fluoride  toothpastes:  An overview. Community Dent Health, 14: 4–10, 1997.

23. O’Mullane DM, Kavanagh D, Ellwood RP et al. A 3 year clinical trial of  a  combination  of  trimetaphosphate  and  sodium  fluoride  in  silica toothpastes. J Dent Res, 76: 1776–1781, 1997.

24. Chesters RK, Huntington E, Burchell CK, Stephen KW. Effect of oral care habits on caries in adolescents. Caries Res, 26: 299–304, 1992.

25. Chestnutt IG, Schafer F, Jacabson APM, Stephen KW. The influence of toothbrushing frequency and postbrushing rinsing on caries experience in  a  caries  clinical  trial.  Community  Dent  Oral  Epidemiol,  26; 406–411, 1998.

26. White DJ. Reactivity of fluoridated dentifrices with artificial caries. I. Effects of early lesions: F uptake, surface hardening and remineralisa-tion. Caries Res, 21: 126–140, 1987.

27. de Rooij JF, Arends J, Kolar Z. Diffusion of monofluorophosphate in whole bovine enamel at pH 7. Caries Res, 15: 363–368, 1981.

28. Gron  P,  Brudevold  F, Aasenden  R.  Monofluorophosphate  interaction with hydroxyapetite and intact enamel. Caries Res, 5: 202–214, 1971.

29. Forward GC. Action and interaction of fluoride in dentifrices. Commu-nity Dent. Oral Epidemiol, 8: 257–266, 1980.

30. Pader M, Cancro LP, Guillo B. The evaluation of fluoride dentifrices. J Soc. Cosmet. Chem, 28: 681–694, 1977.

31. Palmer  JD,  Prothero  DL. Young  children  and  toothpaste.  Br  Dent  J, 150: 338–339, 1981.

32. Levy SM, Kiritsy MC, Slager SL, Warren JJ, Kohout FJ. Patterns of fluoride dentifrice use among infants. Pediatr Dent, 19: 50–55, 1997.

33. Dowell TB. The use of toothpaste in infancy. Br Dent J, 150: 247–249, 1981.

34. Simard PL, Naccache H, Lachapelle D, Brodeur JM. Ingestion of fluo-ride from dentifrices by children aged 12 to 24 months. Clin Pediatr (Phila), 30: 614–617, 1991.

35. American Dental Association: a guide to the use of fluoride for the pre-vention of dental caries. J Am Dent Assoc, 113: 503–565, 1986.

36. Osuji OO, Leake JL, Chipman ML, Nikiforouk G, Locker D, Levine N. Risk  Factors  for  dental  fluorosis  in  a  fluoridated  community.  J  Dent Res, 67: 1488–1492, 1988.

37. Milsom K, Mitropoulos CM. Enamel defects in 8-year old children in fluoridated  and  non-fluoridated  parts  of  Cheshire.  Caries  Res,  24: 286–289, 1990.

38. Skotowski MC, Hunt RJ, Levy SM. Risk factors for dental fluorosis in pediatric dental patients. J Public Health Dent, 55: 154–159, 1995.

39. Lalumandier JA, Rozier RG. The prevalence and risk factors of fluoro-sis  among  patients  in  a  pediatric  dental  practice.  Pediatr  Dent,  17: 19–25, 1995.

40. Naccache H, Simard PL, Trahan L, Brodeur JM, Dimers M, Lachapelle D. Factors affecting the ingestion of fluoridated dentifrice by children. J Public Health Dent, 52: 222–226, 1992.

41. Centers  for  Disease  Control  and  Prevention.  Recommendations  for using fluoride to prevent and control dental caries in the United States. Morb Mortal Wkly Rep, 50(RR-14): 1–42, 2001.

42. Australian Research Centre for Population Oral Health. The use of flu-orides in Australia: guidelines. Aust Dent J, 51(2): 195–199, 2006.

43. Marks LA and Martens LC. Use of fluorides in children: recommenda-tions  of  the  European Academy  for  Paediatric  Dentistry.  Rev  Belge Med Dent, 53(1): 318–324, 1998.

44. Scottish Intercollegiate Guideline Network. Preventing dental caries in children at high caries risk: Targeted prevention of dental caries in the permanent teeth of 6-16 year olds presenting for dental care. A National Clinical Guideline # 47: 1–42, 2000.

45. World Health Organisation. Fluorides and Oral Health. WHO Techni-cal Report Series 846. Geneva: WHO; 1–37, 1994.

46. Rayner J, Holt R, Blinkhorn F and Duncan K. British Society of Pae-diatric Dentistry: a policy document on oral health care in preschool children. Int J Paediatr Dent, 13(4): 279–285, 2003.

47. Fejerskov O, Thylstrup A, Larsen MJ. Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. Scand J Dent Res, 85: 510–534, 1977.

48. Larsen MJ, Richards A, Fejerskov O. Development of dental fluorosis according  to  age  at  start  of  fluoride  administration.  Caries  Res,  19: 519–527, 1985.

49. Richards A, Kragstrup J, Josephsen K, Fejerskov O. Dental fluorosis developed in post-secretory enamel. J Dent Res, 65: 1406–1409, 1986.

50. Evans RW. Changes in dental fluorosis following an adjustment to the fluoride concentration of Hong Kong’s water supplies. Adv Dent Res, 3: 154–160, 1989.

51. Evans RW, Stamm JW. Dental fluorosis following downward adjust-ment to fluoride in drinking water. J Public Health Den,t 51: 91–98, 1991.

52. Pendrys DG, Stamm JW. Relationship of total fluoride intake to bene-ficial effects and enamel fluorosis. J Dent Res, 69: 529–538, 1990.

53. van Palenstein Helderman WH, Mabelya L, van’t Hof MA, Konig KG. Two  types  of  intraoral  distribution  of  fluorotic  enamel.  Community Dent Oral Epidemiol, 25: 251–255, 1997.

54. Bawden JW. Proceedings of the workshop: changing patterns in sys-temic fluoride intake. J Dent Res, 71: 1212–1265, 1992.

55. Ishii J, Suckling G. The severity of dental fluorosis in children exposed to water with a high fluoride content for various periods of time. J Dent Res, 70: 952–956, 1991.

56. Leverett DH, Adair SM, Vaughan BW, Proskin HM, Moss ME. Ran-domized clinical trial of the effect of prenatal fluoride supplements in preventing dental caries. Caries Res, 31(3):174–9, 1997.

57. Burt  BA.  The  changing  patterns  of  systemic  fluoride  intake.  J  Dent Res, 71: 1228–1237, 1992.

58. Miziara APB, Philippi ST, Levy FM, Buzalaf MAR. Fluoride ingestion from food items and dentifrice in 2-6-year-old Brazilian children living in a fluoridated area using a semiquantitative food frequency question-naire. Community Dent Oral Epidemiol, 37: 305–315, 2009.

59. Fejerskov O, Stephen KW, Richards A, Speirs R. Combined effect of systemic  and  topical  fluoride  treatments  on  human  deciduous  teeth-case studies. Caries Res, 21: 452–459, 1987.

60. Cury JA, Del Fiol FS, Tenuta LM, Rosalen PL. Low-fluoride dentifrice and gastrointestinal fluoride absorption after meals. J Dent Res, 84(12): 1133–7, 2005.

61. Horowitz HS. The need for toothpastes with lower than conventional fluoride  concentration  for  preschool  aged  children.  J  Public  Health Dent, 52: 216–221, 1992.

62. Pendrys DG, Katz RV. Risk of enamel fluorosis associated with fluo-ride supplementation, infant formula and fluoride dentifrice use. Am J Epidemiol, 130: 199–208, 1989.

63. Woltgens JH, Etty EJ, Nieuwland WM, Lyaruu DM. The use of fluo-ride by young and prevalence of mottled enamel. Adv Dent Res 3: 177-182, 1989.

64. American  Dental  Association  Council  of  Dental  Therapeutics: Accepted Dental Therapeutics. Chicago 395–397, 409–412, 1984.

65. Glass RL, Peterson JK, Zuckerberg DA, Naylor MN. Fluoride inges-tion resulting from the use of monofluorophosphate dentifrice by chil-dren. Br Dent J, 138: 423–426, 1975.

66. Moraes SM, Pessan JP, Ramires I, Buzalaf MAR. Fluoride intake from regular and low fluoride dentifrices by 2-3-year-old children: influence of the dentifrice flavor. Braz Oral Res, 21(3): 234–40, 2007.

67. Baxter PM. Toothpaste ingestion during tooth brushing by schoolchild-ren. Br Dent J, 148: 125–128, 1980.

68. Barnhart WE, Hiller KL, Leonard GJ, Michaels SC. Dentifrice usage and  ingestion  among  four  age  groups.  J  Dent  Res,  53:  1317–1322, 1973.

69. Simard PL, Lachapelle D, Trahan L, Naccache H, Demers M, Brodeur JM.  The  ingestion  of  fluoride  dentifrice  by  young  children.  J  Dent Child, 56: 177–181, 1989.

70. Whitford GM, Allmann DW, Shahed AR. Topical fluorides: effect on physiologic  and  biochemical  process.  J  Dent  Res,  66:  1072–1078, 1987.

71. Beltran ED, Szpunar SM. Fluoride in toothpaste for children: sugges-tion for change. Pediatr Dent, 10: 185–188, 1988.

72. Ericsson Y, Forsman B. Fluoride retained from mouth rinsing and den-tifrices in preschool children. Caries Res, 3: 290–299, 1969.

73. Hargreaves JA, Ingram GS, Wagg BJ. A gravimetric study of the inges-tion of toothpaste by children. Caries Res, 6: 237–243, 1972.

74. Naccache H, Simard PL, Trahan L, Demers M, Lapointe C, Brodeur JM.  Variability  in  the  ingestion  of  toothpaste  by  preschool  children. Caries Res, 24: 359–363, 1990.

75. Blinkhorn AS. Influence of social norms on tooth brushing behaviour of preschool children. Community Dent Oral Epidemiol, 6: 222–226, 1978.

76. Stookey GK. Review of fluorosis risk of self-applied topical fluorides: dentifrices,  mouthrinses  and  gels.  Community  Dent  Oral  Epidemiol, 22: 181–186, 1994.

77. Levy SM, Maurice TJ, Jakobsen JR. Feeding patterns, water sources, and fluoride exposures of infants and 1-year-olds. J Am Dent Assoc, 124: 65–69, 1993.

78. Bentley EM, Ellwood RP, Davies RM. Fluoride ingestion from tooth-paste by young children. Br Dent J, 186: 460–462, 1999.

79. Puppin Rontani RM, Correa Kassawara AB, Delgado Rodrigues CR. Influence  of  socioeconomic  level  and  dentifrice  brand  on  the  oral hygiene habits and the fluoridated dentifrice ingestion. J Clin Pediatr Dent, 26: 319–326, 2002.

80. Ripa  LW.  A  critique  of  topical  fluoride  methods  (dentifrices, mouthrinses,  operator,  and  self-applied  gels)  in  an  era  of  decreased caries  and  increased  fluorosis  prevalence.  J  Public  Health  Dent,  51: 23–41, 1991.

81. Adair SM, Piscitelli WP, McKnight-Hanes C. Comparison of the use of a child and an adult dentifrice by a sample of preschool children. Pedi-atr Dent, 19: 99–103, 1997.

82. Levy SM, Maurice TJ, Jakobsen JR. A pilot study of preschooler’s use of a regular-flavored dentifrices and those flavored for children. Pedi-atr Dent, 14: 388–391, 1992.

83. Oliveira MJ, Paiva SM, Martins LH, Ramos-Jorge ML, Lima YB, Cury JA. Fluoride intake by children at risk for the development of dental fluorosis: comparison of regular dentifrices and flavoured dentifrices for children. Caries Res, 41(6): 460–6, 2007.

84. Levy  SM,  Zarei  ZM.  Evolution  of  fluoride  exposures  in  children.  J Dent Child, 58: 467–473, 1991.

85. Osuji OO, Leake JL, Chipman ML, Nikiforuk G, Locker D, Levine N. Risk  factors  for  dental  fluorosis  in  a  fluoridated  community.  J  Dent Res, 67: 1488–1492, 1988.

86. Ammari AB, Bloch-Zupan A, Ashley PF. Systematic Review of studies comparing the anti-caries efficacy of children’s toothpaste containing 600ppm of fluoride or less with high fluoride toothpastes of 1000ppm or above. Caries Res, 37: 85–92, 2003.

87. Holt RD, Morris CE, Winter GB, Downer MC. Enamel opacities and dental caries in children who used a low fluoride toothpaste between 2 and 5 years of age. Int Dent J, 44: 331–341, 1994.

88. Rock WP, Sabieha AM. The relationship between reported toothpaste usage in infancy and fluorosis of permanent incisors. Br Dent J, 183: 165–170, 1997.

89. Holt RD, Nunn JH, Rock WP, Page J. British society of paediatric den-tistry: A policy document on fluoridated dietary supplements and fluo-ridated toothpastes for children. Int J Paediatr Dent. 6: 139–142, 1996.

90. Rock  WP.  Young  children  and  fluoride  toothpaste.  Br  Dent  J,  177: 17–20, 1994.

91. Brighenti FL, Delbem AC, Buzalaf MA, Oliveira FA, Ribeiro DB, Sas-saki KT. In vitro evaluation of acidified toothpastes with low fluoride content. Caries Res, 40: 239–244, 2006.

92. Sonju CA, Ogaard B, Duscher H, Ruben J, Arends J, Sonju T. Caries development in fluoridated and non-fluoridated deciduous and perma-nent enamel in situ examined by micro-radiography and confocal laser scanning microscopy. Adv Dent Res, 11: 442–447, 1997.

93. Bloch-Zupan A. Is the fluoride concentration limit of 1,500 ppm in cos-metics (EU Guidelines) still up to date? Caries Res, 35: 22S–25S, 2001.

94. Thaveesangpanich P, Itthagarun A, King NM, Wefel JS. The effects of child  formula  toothpastes  on  enamel  caries  using  two  in  vitro  pH-cycling models. Int Dent J, 55: 217–223, 2005.

95. Itthagarun A, King NM, Rana R. Effects of child formula dentifrices on artificial  caries  like  lesions  using  in  vitro  pH-cycling:  preliminary results. Int Dent J, 57(5): 307–13, 2007.

96. Ekambaram M, Itthagarun A, King NM. Comparison of the remineral-izing potential of child formula dentifrice. Int J Paediatr Dent, 21(2): 132–40, 2011. 

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Scopus: CiteScore 2.0 (2022) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.

Submission Turnaround Time

Conferences

Top