Article Data

  • Views 584
  • Dowloads 134

Original Research

Open Access

Preliminary Study Evaluating the Accuracy of MRI Images on CBCT Images in the Field of Orthodontics

  • Tai K1
  • Park JH2,*,
  • Hayashi K3
  • Yanagi Y4
  • Asaumi JI5
  • Iida S6
  • Shin JW7

1Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, AZ, and PhD Program, Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, and Private Practice of Orthodontics, Okayama, Japan

2Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, AZ and International Scholar, the Graduate School of Dentistry, Kyung Hee University, Seoul, Korea

3Central division of radiology Okayama University hospital, Okayama, Japan

4Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama, Japan

5Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

6Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

7Oral Biology, the Graduate School of Dentistry, Kyung Hee University, Seoul, Korea

DOI: 10.17796/jcpd.36.2.r7853hp574045414 Vol.36,Issue 2,March 2012 pp.211-218

Published: 01 March 2012

*Corresponding Author(s): Park JH E-mail:


Objective: The purpose of this study was to explore the 3-dimensional (3D) accuracy of magnetic resonance imaging (MRI) on cone-beam computed tomography (CBCT) images after the registration of MRI images on CBCT images. Materials and Methods: Three Japanese adult females volunteered for this study. To transform digital imaging and communication in medicine (DICOM) data derived from MRI and CBCT images into polygon data, five software programs were used. CBCT and MRI images were obtained within one week, and both were registered by the iterative closest point (ICP) method. To assess the accuracy of the composite MRI-CBCT, the measurement errors of the MRI-CBCT were verified. Measurement values were compared using frontal and cephalometric soft-tissue landmarks. Differences were analyzed using the non-parametric Mann-Whitney U test. Results: There were no significant linear measurement errors (P ≯ 0.05) when the images were measured from the superimposed MRI-CBCT images. Conclusion: The MRI images attained from MRI - CBCT registration showed accurate 3D linear measurements


Magnetic resonance imaging (MRI), cone-beam computed tomography (CBCT), MRI-CBCT registration, 3D accuracy

Cite and Share

Tai K,Park JH,Hayashi K,Yanagi Y,Asaumi JI,Iida S,Shin JW. Preliminary Study Evaluating the Accuracy of MRI Images on CBCT Images in the Field of Orthodontics. Journal of Clinical Pediatric Dentistry. 2012. 36(2);211-218.


1. Terajima  M,  Nakasima A, Aoki  Y,  Goto  TK,  Tokumori  K,  Mori  N, Hoshinod Y. A 3-dimensional method for analyzing the morphology of patients  with  maxillofacial  deformities.  Am  J  Orthod  Dentofacial Orthop, 136: 857–867, 2009.

2. Oberoi S, Chigurupati R, Gill P, Hoffman WY, Vargervik K. Volumet-ric  assessment  of  secondary  alveolar  bone  grafting  using  cone  beam computed tomography. Cleft Palate Craniofac J, 46: 503–511, 2009.

3. Carvalho  FDAR,  Cevidanes  LHS,  da  Motta  ATS,  Almeida  MADO, Phillips C. Three-dimensional assessment of mandibular advancement 1  year  after  surgery.  Am  J  Orthod  Dentofacial  Orthop,  137: S53.e1–e12, 2010.

4. Haney E, Gansky SA, Lee JS, Johnson E, Maki K, Miller AJ, Huang JC.  Comparative  analysis  of  traditional  radiographs  and  cone-beam computed  tomography  volumetric  images  in  the  diagnosis  and  treat-ment planning of maxillary impacted canines. Am J Orthod Dentofacial Orthop, 137: 590–597, 2010.

5. Honey OB, Scarfe WC, Hilgers MJ, Klueber K, Silveira AM, Haskell BS, Farman AG. Accuracy of cone-beam computed tomography imag-ing of the temporomandibular joint: comparisons with panoramic radi-ology and linear tomography. Am J Orthod Dentofacial Orthop, 132: 429–438, 2007.

6. Hilgers ML, Scarfe WC, Scheetz JP, Farman AG. Accuracy of linear temporomandibular  joint  measurements  with  cone  beam  computed tomography  and  digital  cephalometric  radiography.  Am  J  Orthod Dentofacial Orthop, 128: 803–811, 2005.

7. Kim Y, Hong J, Hwang Y, Park Y. Three-dimensional analysis of pha-ryngeal airway in preadolescent children with different anteroposterior skeletal patterns. Am J Orthod Dentofacial Orthop, 137: 306.e1–e11, 2010.

8. Liu D, Zhang W, Zhang Z, Wu Y, Ma X. Localization of impacted max-illary canines and observation of adjacent incisor resorption with cone-beam  computed  tomography.  Oral  Surg  Oral  Med  Oral  Pathol  Oral Radiol Endod, 105: 91–98, 2008.

9. Berco M, Rigali PH, Miner RM, DeLuca S, Anderson NK, Will LA. Accuracy  and  reliability  of  linear  cephalometric  measurements  from cone-beam computed tomography scans of a dry human skull. Am J Orthod Dentofacial Orthop, 136: 17.e1–e9, 2009.

10. Moshiri M, Scarfe WC, Hilgers ML, Scheetz JP, Silveira AM, Farman AG. Accuracy of linear measurements from imaging plate and lateral cephalometric images derived from cone-beam computed tomography. Am J Orthod Dentofacial Orthop, 132: 550–560, 2007.

11. Oliveira AE, Cevidanes LH, Phillips C, Motta A, Burke B, Tyndall D. Observer  reliability  of  three-dimensional  cephalometric  landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 107: 256–265, 2009.

12. van Vlijmen O, Bergé S, Swennen G, Bronkhorst EM, Katsaros C, Kui-jpers-Jagtman AM. Comparison of cephalometric radiographs obtained from cone-beam computed tomography scans and conventional radi-ographs. J Oral Maxillofac Surg, 67: 92–97, 2009.

13. Chien  PC,  Parks  ET,  Eraso  F,  Hartsfield  JK,  Roberts  WE,  Ofner  S. Comparison of reliability in anatomical landmark identification using two-dimensional  digital  cephalometrics  and  three-dimensional  cone beam  computed  tomography  in  vivo.  Dentomaxillofac  Radiol,  38: 262–273, 2009.

14. Lamichane M, Anderson NK, Rigali PH, Seldin EB, Will LA. Accuracy of reconstructed images from cone-beam computed tomography scans. Am J Orthod Dentofacial Orthop, 136: 156.e1–e6, 2009.

15. Tasaki MM, Westesson PL. Temporomandibular joint: diagnostic accu-racy with sagittal and coronal MR imaging. Radiology, 186: 723–729, 1993.

16. Tasaki MM, Westesson PL, Isberg AM, Ren YF, Tallents RH. Classifi-cation and prevalence of temporomandibular joint disk displacement in patients  and  symptom-free  volunteers.  Am  J  Orthod  Dentofacial Orthop, 109: 249–262, 1996.

17. Goto  TK,  Nishida  S,  Nakamura  Y,  Tokumori  K,  Nakamura  Y, Kobayashi K, Yoshida Y, Yoshiura K. The accuracy of 3-dimensional magnetic  resonance  3D  vibe  images  of  the  mandible:  an  in  vitro  comparison of magnetic resonance imaging and computed tomography. Oral  Surg  Oral  Mad  Oral  Pathol  Oral  Radiol  Endod,  103:  550–559, 2007.

18. Horn  BKP.  Closed-form  solution  of  absolute  orientation  using  unit quaternions. J Opt Soc of Am, 44: 629–642, 1987.

19. Arun  KS,  Huang  TS,  Blostein  SD.  Least-squares  fitting  of  two  3-dimensional  point  sets.  IEEE  Trans  Pattern  Anal  Mach  Intell,  9: 698–700, 1987.

20. Declerck J, Feldmar J, Goris ML. Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images. IEEE Trans Med Imaging, 16: 727–737, 1997. 

21. Terajima M, Furuichi Y, Aoki Y, Goto TK, Tokumori K, Nakasima A. A 3-dimensional method for analyzing facial soft-tissue morphology of patients with jaw deformities. Am J Orthod Dentofacial Orthop, 135: 715–722, 2009.

22. Kataoka Y, Nakano H, Matsuda Y, Araki K, Okano T, Maki K. Three dimensional diagnostic imaging of the alveolar bone using dento-max-illofacial cone beam X-ray CT. Orthod Waves-Jpn Ed, 66: 81–91, 2007.

23. Moorrees CFA. Natural head position-a revival. Am J Orthod Dentofa-cial Orthop, 105: 512–513, 1994.

24. Tai K, Hotokezaka H, Park JH , Tai H, Miyajima K, Choi M, et al. Pre-liminary cone-beam computed tomography study evaluating dental and skeletal changes after treatment with a mandibular Schwarz appliance. Am J Orthod Dentofacial Orthop, 138: 262.e1–e11, 2010.

25. Tai K, Park JH, Mishima K, Hotokezaka H. Using superimposition of 3-dimensional  cone-beam  computed  tomography images  with  surface-based  registration  in  growing  patients.  J  Clin  Pediatr  Dent,  34: 361–368, 2010.

26. Bravo G, Potvin L. Estimating the reliability of continuous measures with Cronbach’s alpha or the intraclass correlation coefficient: toward the integration of two traditions. J Clin Epidemiol, 44: 381–390, 1991.

27. White SC, Pharoah MJ. Oral radiology: principles and interpretation. 4th ed. Mosby, St Louis; 2000.

28. Wyper DJ, Turner JW, Patterson J, Condon BR, Grossart KW, Jenkins A, et al. Accuracy of stereotaxic localization using MRI and CT. J Neu-rol Neurosurg Psychiatry, 49: 1445–1448, 1986.

29. Buhl SK, Duun-Christensen AK, Kristensen BH, Behrens CF. Clinical evaluation  of  3D/3D  MRI-CBCT  automatching  on  brain  tumors  for online patient setup verification – A step towards MRI-based treatment planning. Acta Oncologica, 49: 1085–1091, 2010.

30. Weltens C, Menten J, Feron M, Bellon E, Demaerel P, Maes F, et al. Interobserver  variations  in  gross  tumor  volume  delineation  of  brain tumors  on  computed  tomography  and  impact  of  magnetic  resonance imaging. Radiother Oncol, 60: 49–59, 2001.

31. Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys, 43: 57–66, 1999. 

32. Khoo VS, Dearnaley DP, Finnigan DJ, Padhani A, Tanner SF, Leach MO. Magnetic resonance imaging (MRI): Considerations and applica-tions in radiotherapy treatment planning. Radiother Oncol, 42: 1–15, 1997.

33. Gosain AK, Amarante MTJ, Hyde JS, Yousif N. A dynamic analysis of changes  in  the  nasolabial  fold  using  magnetic  resonance  imaging: implications for facial rejuvenation and facial animation surgery. Plas-tic & Reconstructive Surgery, 98: 622–636, 1996.

34. Beuf O, Lissac M, Cremillieux Y, Briguet A. Correlation between mag-netic resonance imaging disturbances and the magnetic susceptibility of dental materials. Dent Mater, 10: 265–268, 1994.

35. Brown B, Swallow C, Eiseman A. MRI artifact masquerading as orbital disease. Int Ophthalmol, 24: 343–347, 2001. 

36. Lissac  M,  Coudert  JL,  Briguet A, Amiel  M.  Disturbances  caused  by dental  materials  in  magnetic  resonance  imaging.  Int  Dent  J,  42: 229–233, 1992. 

37. Heindel W, Friedman G, Bunke J, Thomas B, Firsching R, Ernestus RI. Artifacts in MR imaging after surgical intervention. J Comput Assist Tomogr, 10: 596–599, 1986.

38. Elison JM, Leggitt VL, Thomson M, Oyoyo U, Wycliffe ND. Influence of common orthodontic appliances on the diagnostic quality of cranial magnetic  resonance  images. Am  J  Orthod  Dentofacial  Orthop,  134: 563–572, 2008.

39. Khoo VS, Dearnaley DP, Finnigan DJ, Padhani A, Tanner SF, Leach MO. Magnetic resonance imaging (MRI): Considerations and applications in radiotherapy treatment planning. Radiother Oncol, 42: 1–15, 1997.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

PubMed (MEDLINE) PubMed comprises more than 35 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full text content from PubMed Central and publisher web sites.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Scopus: CiteScore 2.0 (2022) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.

Submission Turnaround Time